This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A151617 #16 Mar 07 2021 03:08:18 %S A151617 2,22,242,2662,7986,45254,178354,854502,3670898,16741318,73862514, %T A151617 331879526,1476246706,6603168198,29445050162,131524950502, %U A151617 586945452786,2620665361094,11697730702834,52222780377702,233120598486578,1040691781127878,4645710145608114,20739029883622886,92580871368935026,413291071457721798 %N A151617 Row sums of A153521. %H A151617 G. C. Greubel, <a href="/A151617/b151617.txt">Table of n, a(n) for n = 1..500</a> %H A151617 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,11). %F A151617 From _G. C. Greubel_, Mar 04 2021: (Start) %F A151617 a(n) = 2*a(n-1) + 11*a(n-2), for n>4, with a(1)=2, a(2)=22, a(3)=242, a(4)=2662. %F A151617 G.f.: 2*x*(1 + 11*x + (11*x)^2*(1+9*x)/(1-2*x-11*x^2)). %F A151617 G.f.: 2*x*(1 +9*x +88*x^2 +968*x^3)/(1-2*x-11*x^2). %F A151617 a(n) = 2*a(n-1) + prime(j)*a(n-2), for n > 4, with a(1) = 2, a(2) = 2*prime(j), a(3) = 2*prime(j)^2, a(4) = 2*prime(j)^3 for j = 5. %F A151617 a(n) = 2*(prime(j)-3)*[n=1] -2*prime(j)*(prime(j)-3)*[n=2] +2*prime(j)^2*(i*sqrt(prime(j)))^(n-3)*(ChebyshevU(n-3, -i/Sqrt(prime(j))) -((prime(j) -2)*i/sqrt(prime(j)))*ChebyshevU(n-4, -i/sqrt(prime(j)))) for j = 5. (End) %p A151617 m:= 40; %p A151617 S:= series( x*(2 +18*x +176*x^2 +1936*x^3)/(1-2*x-11*x^2), x, m+1); %p A151617 seq(coeff(S, x, j), j = 1..m); # _G. C. Greubel_, Mar 04 2021 %t A151617 LinearRecurrence[{2, 11}, {2, 22, 242, 2662}, 40] (* _G. C. Greubel_, Mar 04 2021 *) %o A151617 (Sage) %o A151617 def A151617_list(prec): %o A151617 P.<x> = PowerSeriesRing(ZZ, prec) %o A151617 return P( 2*x*(1 +9*x +88*x^2 +968*x^3)/(1-2*x-11*x^2) ).list() %o A151617 a=A151617_list(41); a[1:] # _G. C. Greubel_, Mar 04 2021 %o A151617 (Magma) %o A151617 R<x>:=PowerSeriesRing(Integers(), 41); %o A151617 Coefficients(R!( 2*x*(1 +9*x +88*x^2 +968*x^3)/(1-2*x-11*x^2) )); // _G. C. Greubel_, Mar 04 2021 %Y A151617 Cf. A153521. %K A151617 nonn,easy %O A151617 1,1 %A A151617 _N. J. A. Sloane_, May 29 2009 %E A151617 Terms a(11) onward added by _G. C. Greubel_, Mar 04 2021