cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151630 Number of permutations of 2 indistinguishable copies of 1..n with exactly 8 adjacent element pairs in decreasing order.

This page as a plain text file.
%I A151630 #18 Jun 11 2023 11:49:10
%S A151630 0,0,0,0,1,37257,49258935,19323413187,3950966047950,539417838175698,
%T A151630 56160822639510114,4828612774471173450,360918591663105680031,
%U A151630 24285778099889122541071,1507815882167268489272385,87937588306397361416746005,4882223035755085016119166100
%N A151630 Number of permutations of 2 indistinguishable copies of 1..n with exactly 8 adjacent element pairs in decreasing order.
%H A151630 Andrew Howroyd, <a href="/A151630/b151630.txt">Table of n, a(n) for n = 1..200</a>
%H A151630 G. C. Greubel, <a href="/A151630/a151630.txt">Generating functions</a>
%H A151630 <a href="/index/Rec#order_45">Index entries for linear recurrences with constant coefficients</a>, signature (495, -117117, 17647773, -1903962060, 156757247010, -10251395632590, 547263937214190, -24324431827594815, 913604942997437285, -29330261021755017639, 812145644279366953815, -19536467308476604835118, 410659658077014965566332, -7578696975148131792068340, 123267861018665262572785476, -1772533955817200772006505695, 22589412092760272526249081417, -255637202218592552368928158843, 2572704107472364912183081654395, -23049204197252732334976831299504, 183953147111817401024161390520370, -1308189874199616697817539200074238, 8289399765160712341131849367972542, -46783616321998478795458149057122145, 234999225964232933834149112694372867, -1049484407925242792828750467607365185, 4161052733141162438991333881629966449, -14620606470238507069638288669331531446, 45425825709704628283109430191976080400, -124468763777608175568796041188271717984, 299821137334135681782712542449338805040, -632525928565428301410709620694018226208, 1163532979856355964909411340878324232832, -1856399981685264274584742456532993660160, 2552803207326431764967213761527030470400, -3002667039899658352436610420272301120000, 2992862237498353265892271006627584000000, -2498577025975608447805248342475776000000, 1721249910903347055783181973286720000000, -959341910144268687109525373846400000000, 420984649108341364830441158592000000000, -139779856035015771303825062400000000000, 32957940077972879881652858880000000000, -4910962939069964235908198400000000000, 347259290825980971841536000000000000).
%F A151630 From _G. C. Greubel_, Sep 08 2022: (Start)
%F A151630 a(n) = Sum_{j=0..8} (-1)^j*binomial(2*n+1, j)*binomial(10-j, 2)^n.
%F A151630 G.f. and e.g.f. are in the file "Generating functions". (End)
%t A151630 With[{B=Binomial}, Table[Sum[(-1)^j*B[2n+1,j]*B[10-j,2]^n, {j,0,8}], {n, 30}]] (* _G. C. Greubel_, Sep 08 2022 *)
%o A151630 (Magma) [(&+[(-1)^j*Binomial(2*n+1, j)*Binomial(10-j, 2)^n: j in [0..8]]): n in [1..30]]; // _G. C. Greubel_, Sep 08 2022
%o A151630 (SageMath)
%o A151630 def A151630(n): return sum((-1)^j*binomial(2*n+1, j)*binomial(10-j, 2)^n for j in (0..8))
%o A151630 [A151630(n) for n in (1..30)] # _G. C. Greubel_, Sep 08 2022
%Y A151630 Column k=8 of A154283.
%K A151630 nonn
%O A151630 1,6
%A A151630 _R. H. Hardin_, May 29 2009
%E A151630 Terms a(11) and beyond from _Andrew Howroyd_, May 06 2020