cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151655 Number of permutations of 6 indistinguishable copies of 1..n with exactly 6 adjacent element pairs in decreasing order.

This page as a plain text file.
%I A151655 #8 Jun 11 2023 12:07:59
%S A151655 0,1,5703096,66555527346,192698692565176,316974599311624359,
%T A151655 397768872682646100636,434043806185138225218436,
%U A151655 439395848635147188368481612,426929358472916282151832375761,405535686731345325826890883972000,380430912675288777613784486729018310
%N A151655 Number of permutations of 6 indistinguishable copies of 1..n with exactly 6 adjacent element pairs in decreasing order.
%H A151655 Andrew Howroyd, <a href="/A151655/b151655.txt">Table of n, a(n) for n = 1..200</a>
%H A151655 <a href="/index/Rec#order_28">Index entries for linear recurrences with constant coefficients</a>, signature (3003, -3786300, 2682024198, -1201864914243, 363404029293333, -77161011499803210, 11815176548149360380, -1329158779656248955015, 111309488573704522925285, -7004394451533711514550520, 333373338418730167713194550, -12052968983433090157214600565, 331837044779855430240638028795, -6962501444742670295905526272770, 111258820356797446462202396283240, -1351514454383997891678186449039520, 12441863576084489874034981639919280, -86400749551919732280723951784162720, 449615621468636777315379208600296960, -1737983801386696776678864384637929984, 4938249787156503974586235038036959232, -10198678551925813823665615980013240320, 15129400679321667476301700714578051072, -15863940181654549420963974173350428672, 11439048602497051712704955915223171072, -5388341550257906862980346825576284160, 1491958732108657007719279670958489600, -184123553326797611274256653484032000).
%Y A151655 Column k=6 of A237252.
%K A151655 nonn
%O A151655 1,3
%A A151655 _R. H. Hardin_, May 29 2009
%E A151655 Terms a(7) and beyond from _Andrew Howroyd_, May 06 2020