cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151661 Exponents in g.f. Product_{k>=2} (1 - x^{F_k}) where F_k are the Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 4, 7, 8, 11, 12, 13, 14, 18, 19, 20, 22, 23, 24, 29, 30, 31, 33, 36, 38, 39, 40, 47, 48, 49, 51, 54, 55, 58, 59, 62, 64, 65, 66, 76, 77, 78, 80, 83, 84, 87, 88, 89, 90, 94, 95, 96, 97, 100, 101, 104, 106, 107, 108, 123, 124, 125, 127, 130, 131, 134, 135, 136, 137, 141, 142
Offset: 1

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Examples

			1 - x - x^2 + x^4 + x^7 - x^8 + x^11 - x^12 - x^13 + x^14 + x^18 - x^19 - x^20 + x^22 + x^23 - x^24 + x^29 - x^30 - x^31 + x^33 + x^36 - x^38 - x^39 + x^40 + x^47 - ...
		

Crossrefs

Programs

  • Mathematica
    kmax = 150; Exponent[#, x]& /@ List @@ (Product[1 - x^Fibonacci[k], {k, 2, Ceiling[FindRoot[Fibonacci[x] == kmax, {x, 5}][[1, 2]]]}] + O[x]^kmax // Normal) (* Jean-François Alcover, Oct 08 2018 *)