A151661 Exponents in g.f. Product_{k>=2} (1 - x^{F_k}) where F_k are the Fibonacci numbers.
0, 1, 2, 4, 7, 8, 11, 12, 13, 14, 18, 19, 20, 22, 23, 24, 29, 30, 31, 33, 36, 38, 39, 40, 47, 48, 49, 51, 54, 55, 58, 59, 62, 64, 65, 66, 76, 77, 78, 80, 83, 84, 87, 88, 89, 90, 94, 95, 96, 97, 100, 101, 104, 106, 107, 108, 123, 124, 125, 127, 130, 131, 134, 135, 136, 137, 141, 142
Offset: 1
Keywords
Examples
1 - x - x^2 + x^4 + x^7 - x^8 + x^11 - x^12 - x^13 + x^14 + x^18 - x^19 - x^20 + x^22 + x^23 - x^24 + x^29 - x^30 - x^31 + x^33 + x^36 - x^38 - x^39 + x^40 + x^47 - ...
Links
- F. Ardila, The Coefficients of a Fibonacci power series, arXiv:math/0409418 [math.CO], 2004.
- N. Robbins, Fibonacci Partitions, The Fibonacci Quarterly, 34.4 (1996), pp. 306-313.
- Yufei Zhao, The coefficients of a truncated Fibonacci power series, Fib. Q., 46/47 (2008/2009), 53-55.
Programs
-
Mathematica
kmax = 150; Exponent[#, x]& /@ List @@ (Product[1 - x^Fibonacci[k], {k, 2, Ceiling[FindRoot[Fibonacci[x] == kmax, {x, 5}][[1, 2]]]}] + O[x]^kmax // Normal) (* Jean-François Alcover, Oct 08 2018 *)