This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A151683 #4 Mar 30 2012 16:51:05 %S A151683 1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,2,3,1,3,1,1,1,1,2,1,1,1,2,3,1,3,1,1,1, %T A151683 2,3,1,1,1,3,3,4,1,3,6,1,4,1,1,1,1,2,1,1,1,2,3,1,3,1,1,1,2,3,1,1,1,3, %U A151683 3,4,1,3,6,1,4,1,1,1,2,3,1,1,1,3,3,4,1,3,6,1,1,1,4,3,4,1,1,1,3 %N A151683 Irregular triangle read by rows: row n (n>=0) gives binomial(wt(n+k),k), k >= 0, up to the point where the terms are all zeros (wt() = A000120()). %C A151683 Suggested by Hagen von Eitzen's formula for A160573. %e A151683 The rows for n = 0 .. 36 are: %e A151683 . 1, 1, %e A151683 . 1, 1, 1, %e A151683 . 1, 2, %e A151683 . 1, 1, 1, %e A151683 . 1, 2, 1, 1, %e A151683 . 1, 2, 3, %e A151683 . 1, 3, %e A151683 . 1, 1, 1, %e A151683 . 1, 2, 1, 1, %e A151683 . 1, 2, 3, %e A151683 . 1, 3, 1, 1, %e A151683 . 1, 2, 3, 1, 1, %e A151683 . 1, 3, 3, 4, %e A151683 . 1, 3, 6, %e A151683 . 1, 4, %e A151683 . 1, 1, 1, %e A151683 . 1, 2, 1, 1, %e A151683 . 1, 2, 3, %e A151683 . 1, 3, 1, 1, %e A151683 . 1, 2, 3, 1, 1, %e A151683 . 1, 3, 3, 4, %e A151683 . 1, 3, 6, %e A151683 . 1, 4, 1, 1, %e A151683 . 1, 2, 3, 1, 1, %e A151683 . 1, 3, 3, 4, %e A151683 . 1, 3, 6, 1, 1, %e A151683 . 1, 4, 3, 4, 1, 1, %e A151683 . 1, 3, 6, 4, 5, %e A151683 . 1, 4, 6, 10, %e A151683 . 1, 4, 10, %e A151683 . 1, 5, %e A151683 . 1, 1, 1, %e A151683 . 1, 2, 1, 1, %e A151683 . 1, 2, 3, %e A151683 . 1, 3, 1, 1, %e A151683 . 1, 2, 3, 1, 1, %e A151683 . 1, 3, 3, 4, %e A151683 ... %Y A151683 Row sums are A160573. %K A151683 nonn,tabf %O A151683 0,7 %A A151683 _N. J. A. Sloane_, Jun 01 2009