cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151685 a(n) = Sum_{k >= 0} bin2(wt(n+k),k+1), where bin2(i,j) = A013609(i,j), wt(i) = A000120(i).

Original entry on oeis.org

3, 7, 5, 7, 17, 17, 7, 7, 17, 17, 19, 41, 51, 31, 9, 7, 17, 17, 19, 41, 51, 31, 21, 41, 51, 55, 101, 143, 113, 49, 11, 7, 17, 17, 19, 41, 51, 31, 21, 41, 51, 55, 101, 143, 113, 49, 23, 41, 51, 55, 101, 143, 113, 73, 103, 143, 161, 257, 387, 369, 211, 71, 13, 7, 17, 17, 19, 41, 51
Offset: 0

Views

Author

N. J. A. Sloane, Jun 01 2009

Keywords

Comments

Or, a(n) = Sum_{k >= 0} 2^wt(k) * binomial(wt(n+k),k).

Examples

			Contribution from _Omar E. Pol_, Jun 09 2009: (Start)
Triangle begins:
.3;
.7,5;
.7,17,17,7;
.7,17,17,19,41,51,31,9;
.7,17,17,19,41,51,31,21,41,51,55,101,143,113,49,11;
.7,17,17,19,41,51,31,21,41,51,55,101,143,113,49,23,41,51,55,101,143,113,...
(End)
		

Crossrefs

For generating functions of the form Product_{k>=c} (1+a*x^(2^k-1)+b*x^2^k) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694.
Cf. A000079. - Omar E. Pol, Jun 09 2009

Programs

  • Maple
    bin2:=proc(n,k) option remember; if k<0 or k>n then 0
    elif k=0 then 1 else 2*bin2(n-1,k-1)+bin2(n-1,k); fi; end;
    wt := proc(n) local w,m,i;
    w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end:
    f:=n->add( bin2(wt(n+k),k),k=0..120 );
    # or:
    f := n->add( 2^k*binomial(wt(n+k),k),k=0..20 );
  • Mathematica
    max = 70; (* number of terms *)
    CoefficientList[Product[1 + 2*x^(2^k-1) + x^(2^k), {k, 0, Log2[max+1] // Ceiling}] + O[x]^max, x] (* Jean-François Alcover, Aug 03 2022 *)

Formula

G.f.: Product_{ k >= 0 } (1 + 2*x^(2^k-1) + x^(2^k)).