cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151702 a(0)=1, a(1)=0; a(2^i + j) = a(j) + a(j+1) for 0 <= j < 2^i.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 3, 4, 3, 1, 1, 2, 2, 2, 3, 4, 3, 2, 3, 4, 4, 5, 7, 7, 4, 1, 1, 2, 2, 2, 3, 4, 3, 2, 3, 4, 4, 5, 7, 7, 4, 2, 3, 4, 4, 5, 7, 7, 5, 5, 7, 8, 9, 12, 14, 11, 5, 1, 1, 2, 2, 2, 3, 4, 3, 2, 3, 4, 4, 5, 7, 7, 4, 2, 3, 4, 4, 5, 7, 7, 5, 5, 7, 8, 9, 12, 14, 11, 5, 2, 3, 4, 4, 5, 7, 7
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2009

Keywords

Crossrefs

For the recurrence a(2^i+j) = C*a(j) + D*a(j+1), a(0) = A, a(1) = B for following values of (A B C D) see: (0 1 1 1) A118977, (1 0 1 1) A151702, (1 1 1 1) A151570, (1 2 1 1) A151571, (0 1 1 2) A151572, (1 0 1 2) A151703, (1 1 1 2) A151573, (1 2 1 2) A151574, (0 1 2 1) A160552, (1 0 2 1) A151704, (1 1 2 1) A151568, (1 2 2 1) A151569, (0 1 2 2) A151705, (1 0 2 2) A151706, (1 1 2 2) A151707, (1 2 2 2) A151708.
If first two terms are dropped, same as A151552.

Programs

  • Maple
    f:=proc(r,s,a,b) local s1,n,i,j;
    s1:=array(0..120);
    s1[0]:=r; s1[1]:=s;
    for n from 2 to 120 do i:=floor(log(n)/log(2));
    j:=n-2^i; s1[n]:=a*s1[j]+b*s1[j+1]; od:
    [seq(s1[n],n=0..120)];
    end;
    f(1,0,1,1);
  • Mathematica
    a = {1, 0}; Do[AppendTo[a, a[[j]] + a[[j + 1]]], {i, 6}, {j, 2^i}]; a (* Ivan Neretin, Jun 28 2017 *)