A151702 a(0)=1, a(1)=0; a(2^i + j) = a(j) + a(j+1) for 0 <= j < 2^i.
1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 3, 4, 3, 1, 1, 2, 2, 2, 3, 4, 3, 2, 3, 4, 4, 5, 7, 7, 4, 1, 1, 2, 2, 2, 3, 4, 3, 2, 3, 4, 4, 5, 7, 7, 4, 2, 3, 4, 4, 5, 7, 7, 5, 5, 7, 8, 9, 12, 14, 11, 5, 1, 1, 2, 2, 2, 3, 4, 3, 2, 3, 4, 4, 5, 7, 7, 4, 2, 3, 4, 4, 5, 7, 7, 5, 5, 7, 8, 9, 12, 14, 11, 5, 2, 3, 4, 4, 5, 7, 7
Offset: 0
Keywords
Links
- Ivan Neretin, Table of n, a(n) for n = 0..8191
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Crossrefs
For the recurrence a(2^i+j) = C*a(j) + D*a(j+1), a(0) = A, a(1) = B for following values of (A B C D) see: (0 1 1 1) A118977, (1 0 1 1) A151702, (1 1 1 1) A151570, (1 2 1 1) A151571, (0 1 1 2) A151572, (1 0 1 2) A151703, (1 1 1 2) A151573, (1 2 1 2) A151574, (0 1 2 1) A160552, (1 0 2 1) A151704, (1 1 2 1) A151568, (1 2 2 1) A151569, (0 1 2 2) A151705, (1 0 2 2) A151706, (1 1 2 2) A151707, (1 2 2 2) A151708.
If first two terms are dropped, same as A151552.
Programs
-
Maple
f:=proc(r,s,a,b) local s1,n,i,j; s1:=array(0..120); s1[0]:=r; s1[1]:=s; for n from 2 to 120 do i:=floor(log(n)/log(2)); j:=n-2^i; s1[n]:=a*s1[j]+b*s1[j+1]; od: [seq(s1[n],n=0..120)]; end; f(1,0,1,1);
-
Mathematica
a = {1, 0}; Do[AppendTo[a, a[[j]] + a[[j + 1]]], {i, 6}, {j, 2^i}]; a (* Ivan Neretin, Jun 28 2017 *)