This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A151709 #6 Jun 19 2021 03:22:27 %S A151709 1,2,192,14632,5451140,2216555772,2201283594512,2563699840815752, %T A151709 5239330894956743702,12738172416005805235262, %U A151709 45354957806572334315266802,190794310975336315988205573422,1056059186013450690759502943569093,6805676661977149073551721890947184830 %N A151709 Row sums of A156741. %H A151709 G. C. Greubel, <a href="/A151709/b151709.txt">Table of n, a(n) for n = 0..200</a> %F A151709 a(n) = Sum_{k=0..n} A156741(n, k). %t A151709 A156741[n_, k_]:= Round[Product[Binomial[2*(n+j), 2*(k+j)]/Binomial[2*(n-k+j), 2*j], {j, 0, 8}]]; %t A151709 A151709[n_]:= A151709[n]= Sum[A156741[n, k], {k,0,n}]; %t A151709 Table[A151709[n], {n, 0, 30}] (* _G. C. Greubel_, Jun 19 2021 *) %o A151709 (Sage) %o A151709 def A156741(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..8)) ) %o A151709 def A151709(n): return sum( A156741(n, k) for k in (0..n) ) %o A151709 [A151709(n) for n in (0..30)] # _G. C. Greubel_, Jun 19 2021 %Y A151709 Cf. A156741. %K A151709 nonn %O A151709 0,2 %A A151709 _N. J. A. Sloane_, Jun 06 2009 %E A151709 Terms a(11) onward added by _G. C. Greubel_, Jun 19 2021