cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151709 Row sums of A156741.

This page as a plain text file.
%I A151709 #6 Jun 19 2021 03:22:27
%S A151709 1,2,192,14632,5451140,2216555772,2201283594512,2563699840815752,
%T A151709 5239330894956743702,12738172416005805235262,
%U A151709 45354957806572334315266802,190794310975336315988205573422,1056059186013450690759502943569093,6805676661977149073551721890947184830
%N A151709 Row sums of A156741.
%H A151709 G. C. Greubel, <a href="/A151709/b151709.txt">Table of n, a(n) for n = 0..200</a>
%F A151709 a(n) = Sum_{k=0..n} A156741(n, k).
%t A151709 A156741[n_, k_]:= Round[Product[Binomial[2*(n+j), 2*(k+j)]/Binomial[2*(n-k+j), 2*j], {j, 0, 8}]];
%t A151709 A151709[n_]:= A151709[n]= Sum[A156741[n, k], {k,0,n}];
%t A151709 Table[A151709[n], {n, 0, 30}] (* _G. C. Greubel_, Jun 19 2021 *)
%o A151709 (Sage)
%o A151709 def A156741(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..8)) )
%o A151709 def A151709(n): return sum( A156741(n, k) for k in (0..n) )
%o A151709 [A151709(n) for n in (0..30)] # _G. C. Greubel_, Jun 19 2021
%Y A151709 Cf. A156741.
%K A151709 nonn
%O A151709 0,2
%A A151709 _N. J. A. Sloane_, Jun 06 2009
%E A151709 Terms a(11) onward added by _G. C. Greubel_, Jun 19 2021