cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151740 Composites that are the sum of two consecutive composite numbers.

This page as a plain text file.
%I A151740 #24 Feb 07 2024 01:28:12
%S A151740 10,14,22,26,34,38,46,49,51,55,58,62,65,69,74,77,82,86,91,94,99,106,
%T A151740 111,115,118,122,125,129,134,142,146,153,155,158,161,166,169,171,175,
%U A151740 178,183,185,187,189,194,202,206,209,214,218,221,226,231,235,237,243,245
%N A151740 Composites that are the sum of two consecutive composite numbers.
%C A151740 The even terms of this sequence are exactly twice the primes > 3. The odd terms are odd composites c for which the odd integer next to c/2 is not prime. - _M. F. Hasler_, Jun 16 2009
%C A151740 The English language can be ambiguous! What is meant here is: write down a list of the composite numbers 4,6,8,9,10,12,... Whenever the sum of two adjacent terms is composite, adjoin it to the sequence: 4+6=10, 6+8=14, 10+12=22, ... - _N. J. A. Sloane_, Nov 26 2019
%H A151740 Karl-Heinz Hofmann, <a href="/A151740/b151740.txt">Table of n, a(n) for n = 1..10000</a>
%t A151740 CompositeNext[n_]:=Module[{k=n+1},While[PrimeQ[k],k++ ];k]; q=6!;lst2={};Do[If[ !PrimeQ[n],c=CompositeNext[n];a2=n+c;If[ !PrimeQ[a2],AppendTo[lst2,a2]]],{n,q}];lst2 (* _Vladimir Joseph Stephan Orlovsky_, Jun 17 2009 *)
%t A151740 Module[{c=Select[Range[300],CompositeQ],s2},s2=Total/@Partition[c,2,1];Intersection[c,s2]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Nov 27 2019 *)
%o A151740 (PARI) isA151740(n)= bittest(n,0) || return(isprime(n/2) && n>6); !isprime(bitor(n\2,1)) && !isprime(n) && n>1 \\ _M. F. Hasler_, Jun 16 2009
%o A151740 (Python)
%o A151740 from sympy import isprime, composite
%o A151740 print([totest for k in range(1,92) if not isprime(totest := composite(k) + composite(k+1))]) # _Karl-Heinz Hofmann_, Feb 06 2024
%Y A151740 Cf. A002808, A151741, A151742, A151743, A151744, A151745, A060254, A060327, A060339, A096785, A096787, A135170. - _M. F. Hasler_, Jun 16 2009
%Y A151740 Cf. A167611 (Essentially the same, except for initial term).
%K A151740 nonn
%O A151740 1,1
%A A151740 _Claudio Meller_, Jun 15 2009