This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A151744 #15 Apr 16 2015 10:53:11 %S A151744 17783,25057,47303,48383,49297,76343,89783,205703,412343,516457, %T A151744 704183,754417,790703,938183,1105343,1110743,1279583,1563503,1632817, %U A151744 1744583,1890743,1903103,2062943,2276303,2714617,2802383,2812897,2932703 %N A151744 Primes which are the sum of two, three, four and five consecutive composite numbers. %C A151744 17783 is in the list because: 17783 = 8891 + 8892 (sum of two consecutive composite numbers) %C A151744 17783 = 5926 + 5928 + 5929 (sum of three consecutive composite numbers) %C A151744 17783 = 4444 + 4445 + 4446 + 4448 (sum of four consecutive composite numbers) %C A151744 17783 = 3554 + 3555 + 3556 + 3558 + 3560 (sum of five consecutive composite numbers) %H A151744 Harvey P. Dale, <a href="/A151744/b151744.txt">Table of n, a(n) for n = 1..100</a> %F A151744 Intersection of A060254, A060328, A060329 and A060330. - _R. J. Mathar_, Jun 17 2009 %t A151744 CompositeNext[n_]:=Module[{k=n+1},While[PrimeQ[k],k++ ];k]; q=9!; lst2={};Do[If[ !PrimeQ[n],c=CompositeNext[n];a2=n+c;If[PrimeQ[a2],AppendTo[lst2,a2]]],{n,q}];lst2; lst3={};Do[If[ !PrimeQ[n],c1=CompositeNext[n];c2=CompositeNext[c1];a3=n+c1+c2;If[PrimeQ[a3],AppendTo[lst3,a3]]],{n,q}];lst3; lst4={};Do[If[ !PrimeQ[n],c1=CompositeNext[n];c2=CompositeNext[c1];c3=CompositeNext[c2];a4=n+c1+c2+c3;If[PrimeQ[a4],AppendTo[lst4,a4]]],{n,q}];lst4; lst5={};Do[If[ !PrimeQ[n],c1=CompositeNext[n];c2=CompositeNext[c1];c3=CompositeNext[c2];c4=CompositeNext[c3];a5=n+c1+c2+c3+c4;If[PrimeQ[a5],AppendTo[lst5,a5]]],{n,q}];lst5; Intersection[lst2,lst3,lst4,lst5] (* _Vladimir Joseph Stephan Orlovsky_, Jun 17 2009 *) %t A151744 Module[{comps=Select[Range[2*10^6],CompositeQ]},Intersection@@ Table[ Select[ Total/@ Partition[comps,n,1],PrimeQ],{n,2,5}]] (* _Harvey P. Dale_, Apr 16 2015 *) %K A151744 nonn %O A151744 1,1 %A A151744 _Claudio Meller_, Jun 15 2009 %E A151744 Extended beyond a(7) by _Klaus Brockhaus_, Jun 16 2009