This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A151751 #4 Jul 11 2012 14:45:14 %S A151751 2,0,6,-44,0,12,0,-220,0,20,2166,0,-660,0,30,0,15162,0,-1540,0,42, %T A151751 -196888,0,60648,0,-3080,0,56,0,-1771992,0,181944,0,-5544,0,72, %U A151751 28730410,0,-8859960,0,454860,0,-9240,0,90 %N A151751 Triangle of coefficients of generalized Bernoulli polynomials associated with a Dirichlet character modulus 8. %C A151751 Let X be a periodic arithmetical function with period m. The generalized Bernoulli polynomials B_n(X,x) attached to X are defined by means of the generating function %C A151751 (1)... t*exp(t*x)/(exp(m*t)-1) * sum {r = 0..m-1} X(r)*exp(r*t) %C A151751 = sum {n = 0..inf} B_n(X,x)*t^n/n!. %C A151751 For the theory and properties of these polynomials see [Cohen, Section 9.4]. In the present case, X is chosen to be the Dirichlet character modulus 8 given by %C A151751 (2)... X(8*n+1) = X(8*n+7) = 1; X(8*n+3) = X(8*n+5) = -1; X(2*n) = 0. %C A151751 Cf. A153641. %D A151751 H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag. %F A151751 TABLE ENTRIES %F A151751 (1)... T(2*n,2*k+1) = 0, T(2*n+1,2*k) = 0; %F A151751 (2)... T(2*n,2*k) = (-1)^(n-k-1)*C(2*n,2*k)*2*(n-k)*A000464(n-k-1); %F A151751 (3)... T(2*n+1,2*k+1) = (-1)^(n-k-1)*C(2*n+1,2*k+1)*2*(n-k)*A000464(n-k-1); %F A151751 where C(n,k) = binomial(n,k). %F A151751 GENERATING FUNCTION %F A151751 The e.g.f. for these generalized Bernoulli polynomials is %F A151751 (4)... t*exp(x*t)*(exp(t)-exp(3*t)-exp(5*t)+exp(7*t))/(exp(8*t)-1) %F A151751 = sum {n = 2..inf} B_n(X,x)*t^n/n! = 2*t^2/2! + 6*x*t^3/3! + (12*x^2 - 44)*t^4/4! + .... %F A151751 In terms of the ordinary Bernoulli polynomials B_n(x) %F A151751 (5)... B_n(X,x) = 8^(n-1)*{B_n((x+1)/8) - B_n((x+3)/8) - B_n((x+5)/8) + B_n((x+7)/8)}. %F A151751 The B_n(X,x) are Appell polynomials of the form %F A151751 (6)... B_n(X,x) = sum {j = 0..n} binomial(n,j)*B_j(X,0)*x*(n-j). %F A151751 The sequence of generalized Bernoulli numbers %F A151751 (7)... [B_n(X,0)]n>=2 = [2,0,-44,0,2166,0,...] %F A151751 has the e.g.f. %F A151751 (8)... t*(exp(t)-exp(3*t)-exp(5*t)+exp(7*t))/(exp(8*t)-1), %F A151751 which simplifies to %F A151751 (9)... t*sinh(t)/cosh(2*t). %F A151751 Hence %F A151751 (10)... B_(2*n)(X,0) = (-1)^(n+1)*2*n*A000464(n-1); B_(2*n+1)(X,0) = 0. %F A151751 The sequence {B_(2*n)(X,0)}n>=2 is A161722. %F A151751 RELATION WITH TWISTED SUMS OF POWERS %F A151751 The generalized Bernoulli polynomials may be used to evaluate sums of k-th powers twisted by the function X(n). For the present case the result is %F A151751 (11)... sum{n = 0..8*N-1} X(n)*n^k = 1^k-3^k-5^k+7^k- ... +(8*N-1)^k %F A151751 = [B_(k+1)(X,8*N) - B_(k+1)(X,0)]/(k+1) %F A151751 For the proof, apply [Cohen, Corollary 9.4.17 with m = 8 and x = 0]. %F A151751 MISCELLANEOUS %F A151751 (12)... Row sums [2, 6, -32, ...] = (-1)^(1+binomial(n,2))*A109572(n) %F A151751 = (-1)^(1+binomial(n,2))*n*A000828(n-1) = (-1)^(1+binomial(n,2))*n* 2^(n-2)*A000111(n-1). %e A151751 The triangle begins %e A151751 n\k|........0.......1........2.......3......4.......5.......6 %e A151751 ============================================================= %e A151751 .2.|........2 %e A151751 .3.|........0.......6 %e A151751 .4.|......-44.......0.......12 %e A151751 .5.|........0....-220........0......20 %e A151751 .6.|.....2166.......0.....-660.......0......30 %e A151751 .7.|........0...15162........0...-1540.......0.....42 %e A151751 .8.|..-196888.......0....60648.......0...-3080......0......56 %e A151751 ... %p A151751 with(gfun): %p A151751 for n from 2 to 10 do %p A151751 Genbernoulli(n,x) := 8^(n-1)*(bernoulli(n,(x+1)/8)-bernoulli(n,(x+3)/8)-bernoulli(n,(x+5)/8)+bernoulli(n,(x+7)/8)); %p A151751 seriestolist(series(Genbernoulli(n,x),x,10)) %p A151751 end do; %Y A151751 Cf. A000111, A000464, A000828, A001586, A109572, A153641, A161722. %K A151751 easy,tabl,sign %O A151751 2,1 %A A151751 _Peter Bala_, Jun 17 2009