cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151795 Let P = g.f. for A151755, then g.f. for present sequence is G = (P-(x^7+x^15+x^31+x^63+...))/(1+2*x).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 5, 7, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 5, 7, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 26 2009

Keywords

Comments

This was an attempt (so far unsuccessful) to find a closed form for P.

Examples

			G = x^14 + x^22 + x^29 + 3*x^30 + x^38 + x^45 + 3*x^46 + x^53 + 2*x^54 + x^60 + 5*x^61 + 7*x^62 + x^70 + x^77 + 3*x^78 + x^85 + 2*x^86 + x^92 + 5*x^93 + 7*x^94 + x^101 + 2*x^102 + x^108 + 5*x^109 + 6*x^110 + x^116 + 4*x^117 + 4*x^118 + x^123 + 7*x^124 + 17*x^125 + 15*x^126 + ...
		

Crossrefs

Cf. A151755.