This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A151831 #29 Sep 03 2024 11:06:36 %S A151831 1,5,45,495,6095,80617,1121075,16177405,240196280,3648115531, %T A151831 56440473990,886696345225,14111836458890,227093585071305, %U A151831 3689707621144614 %N A151831 Number of fixed 5-dimensional polycubes with n cells. %D A151831 G. Aleksandrowicz and G. Barequet, Counting d-dimensional polycubes and nonrectangular planar polyominoes, Int. J. of Computational Geometry and Applications, 19 (2009), 215-229. %D A151831 G. Aleksandrowicz and G. Barequet, Parallel enumeration of lattice animals, Proc. 5th Int. Frontiers of Algorithmics Workshop, Zhejiang, China, Lecture Notes in Computer Science, 6681, Springer-Verlag, 90-99, May 2011. %D A151831 Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf %D A151831 R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275. %D A151831 S. Luther and S. Mertens, Counting lattice animals in high dimensions, Journal of Statistical Mechanics: Theory and Experiment, 2011 (9), 546-565. %H A151831 G. Aleksandrowicz and G. Barequet, <a href="https://doi.org/10.1007/11809678_44">counting d-dimensional polycubes and nonrectangular planar polyomnoes</a>, Lect. Not. Comp. Sci 4112 (2006) 418-427 Table 2 %H A151831 Gill Barequet, Gil Ben-Shachar, Martha Carolina Osegueda, <a href="http://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/data/uploads/papers/eurocg20_paper_23.pdf">Applications of Concatenation Arguments to Polyominoes and Polycubes</a>, EuroCG '20, 36th European Workshop on Computational Geometry, (Würzburg, Germany, 16-18 March 2020). %F A151831 a(n) = A048666(n)/n. - _Jean-François Alcover_, Sep 12 2019, after _Andrew Howroyd_ in A048666. %t A151831 A048666 = Cases[Import["https://oeis.org/A048666/b048666.txt", "Table"], {_, _}][[All, 2]]; %t A151831 a[n_] := A048666[[n]]/n; %t A151831 Array[a, 15] (* _Jean-François Alcover_, Sep 12 2019 *) %Y A151831 Cf. A001931, A048666, A151830, A151832, A151833, A151834, A151835. %K A151831 nonn,more %O A151831 1,2 %A A151831 _N. J. A. Sloane_, Jul 12 2009 %E A151831 a(14) and a(15) from Luther and Mertens by _Gill Barequet_, Jun 12 2011