cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151879 Produced by same formula that gives A000568 (unlabeled tournaments), but with LCM instead of GCD in the exponent.

This page as a plain text file.
%I A151879 #16 Jul 02 2024 15:06:42
%S A151879 1,1,1,2,8,52,528,8632,252928,15494032,2050181376,525675623520,
%T A151879 239430803636224,189133678584246592,260786292437892272128,
%U A151879 638374284463941710477184,2842966981002836533300953088,23866119110542723640161098330368,394851495657676102988098496313229312
%N A151879 Produced by same formula that gives A000568 (unlabeled tournaments), but with LCM instead of GCD in the exponent.
%H A151879 Andrew Howroyd, <a href="/A151879/b151879.txt">Table of n, a(n) for n = 0..50</a>
%F A151879 a(n) = Sum_{j} (1/(Product (k^(j_k) (j_k)!))) * 2^{t_j}, where j runs through all partitions of n into odd parts, say with j_1 parts of size 1, j_3 parts of size 3, etc., and t_j = (1/2)*[ Sum_{r=1..n, s=1..n} j_r j_s lcm(r,s) - Sum_{r} j_r ].
%t A151879 permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
%t A151879 edges[v_] := Sum[Sum[LCM[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]} ] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}];
%t A151879 oddp[v_] := (For[i = 1, i <= Length[v], i++, If[BitAnd[v[[i]], 1] == 0, Return[0]]]; 1);
%t A151879 a[n_] := a[n] = (s = 0; Do[If[oddp[p] == 1, s += permcount[p]*2^edges[p]], {p, IntegerPartitions[n]}]; s/n!); (* _Jean-François Alcover_, Nov 13 2017, after _Andrew Howroyd_ *)
%o A151879 (PARI)
%o A151879 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
%o A151879 edges(v) = {sum(i=2, #v, sum(j=1, i-1, lcm(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
%o A151879 oddp(v) = {for(i=1, #v, if(bitand(v[i], 1)==0, return(0))); 1}
%o A151879 a(n) = {my(s=0); forpart(p=n, if(oddp(p), s+=permcount(p)*2^(edges(p)))); s/n!} \\ _Andrew Howroyd_, Feb 29 2020
%o A151879 (Python)
%o A151879 from math import prod, lcm, factorial
%o A151879 from fractions import Fraction
%o A151879 from itertools import product
%o A151879 from sympy.utilities.iterables import partitions
%o A151879 def A151879(n): return int(sum(Fraction(1<<(sum(p[r]*p[s]*lcm(r,s) for r,s in product(p.keys(),repeat=2))-sum(p.values())>>1),prod(q**p[q]*factorial(p[q]) for q in p)) for p in partitions(n) if all(q&1 for q in p))) # _Chai Wah Wu_, Jul 01 2024
%K A151879 nonn
%O A151879 0,4
%A A151879 _N. J. A. Sloane_, Jul 21 2009