This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A151898 #17 Jul 26 2024 12:45:08 %S A151898 1,1,1,1,1,9,2,2,2,2,2,16,3,3,3,3,3,23,4,4,4,4,4,30,5,5,5,5,5,37,6,6, %T A151898 6,6,6,44,7,7,7,7,7,51,8,8,8,8,8,58,9,9,9,9,9,65,10,10,10,10,10,72,11, %U A151898 11,11,11,11,79,12,12,12,12,12,86,13,13,13,13,13,93,14,14,14,14,14,100,15 %N A151898 First differences of Frobenius numbers for 7 successive numbers A138987. %C A151898 First differences of Frobenius numbers for 2 successive numbers see A005843 %C A151898 First differences of Frobenius numbers for 3 successive numbers see A014682 %C A151898 First differences of Frobenius numbers for 4 successive numbers see A138995 %C A151898 First differences of Frobenius numbers for 5 successive numbers see A138996 %C A151898 First differences of Frobenius numbers for 6 successive numbers see A138997 %C A151898 First differences of Frobenius numbers for 7 successive numbers see A151898 %C A151898 First differences of Frobenius numbers for 8 successive numbers see A138999 %H A151898 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,2,0,0,0,0,0,-1). %F A151898 a(n) = A138987(n+1)-A138987(n). %F A151898 G.f.: -x*(2*x^11-9*x^5-x^4-x^3-x^2-x-1) / ((x-1)^2*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2). [_Colin Barker_, Dec 13 2012] %t A151898 a = {}; Do[AppendTo[a, FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4, n + 5, n + 6, n + 7}]], {n, 1, 100}]; Differences[a] %t A151898 Differences[Table[FrobeniusNumber[Range[n,n+6]],{n,2,90}]] (* or *) LinearRecurrence[ {0,0,0,0,0,2,0,0,0,0,0,-1},{1,1,1,1,1,9,2,2,2,2,2,16},90] (* _Harvey P. Dale_, Jul 26 2024 *) %Y A151898 Cf. A028387, A037165, A079326, A138985, A138986, A138987, A138988. %Y A151898 Cf. A138989, A138990, A138991, A138992, A138993, A138994. %Y A151898 Cf. A005843, A014682, A138995, A138996, A138997, A138999. %K A151898 nonn,easy %O A151898 1,6 %A A151898 _Artur Jasinski_, Apr 05 2008