A151904 a(n) = (3^(wt(k)+f(j))-1)/2 if n = 6k+j, 0 <= j < 6, where wt = A000120, f = A151899.
0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 4, 4, 13, 13, 13, 40, 13, 13, 40, 40, 40, 121, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 4, 4, 13, 13, 13, 40, 13, 13, 40, 40, 40, 121, 4, 4, 13, 13, 13, 40, 13, 13, 40, 40, 40
Offset: 0
Links
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Programs
-
Maple
f := proc(n) local j; j:=n mod 6; if (j<=1) then 0 elif (j<=4) then 1 else 2; fi; end; wt := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end; A151904 := proc(n) local k,j; k:=floor(n/6); j:=n-6*k; (3^(wt(k)+f(j))-1)/2; end;
-
Mathematica
wt[n_] := DigitCount[n, 2, 1]; f[n_] := {0, 0, 1, 1, 1, 2}[[Mod[n, 6] + 1]]; A151902[n_] := wt[Floor[n/6]] + f[n - 6 Floor[n/6]]; a[n_] := (3^A151902[n] - 1)/2; Table[a[n], {n, 0, 82}] (* Jean-François Alcover, Feb 16 2023 *)
-
PARI
a(n)=(3^(hammingweight(n\6)+[0,0,1,1,1,2][n%6+1])-1)/2 \\ Charles R Greathouse IV, Sep 26 2015
Formula
a(n) = (3^A151902(n)-1)/2.