cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151905 a(0) = a(2) = 0, a(1) = 1; for n >= 3, n = 3*2^k+j, 0 <= j < 3*2^k, a(n) = A151904(j).

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 4, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 4, 4, 13, 13, 13, 40, 13
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2009

Keywords

Comments

Consider the Holladay-Ulam CA shown in Fig. 2 and Example 2 of the Ulam article. Then a(n) is the number of cells turned ON in generation n in a 45-degree sector that are not on the main stem.

Examples

			If written as a triangle:
0,
1, 0,
0, 0, 1,
0, 0, 1, 1, 1, 4,
0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13,
0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40
0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 4, 4, 13, 13, 13, 40, 13, 13, 40, 40, 40, 121,
...
then the rows converge to A151904.
		

References

  • S. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962.

Crossrefs

Programs

  • Maple
    f := proc(n) local j; j:=n mod 6; if (j<=1) then 0 elif (j<=4) then 1 else 2; fi; end;
    wt := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end;
    A151904 := proc(n) local k,j; k:=floor(n/6); j:=n-6*k; (3^(wt(k)+f(j))-1)/2; end;
    A151905 := proc (n) local k,j;
    if (n=0) then 0;
    elif (n=1) then 1;
    elif (n=2) then 0;
    else k:=floor( log(n/3)/log(2) ); j:=n-3*2^k; A151904(j); fi;
    end;
  • Mathematica
    wt[n_] := DigitCount[n, 2, 1];
    f[n_] := {0, 0, 1, 1, 1, 2}[[Mod[n, 6] + 1]];
    A151902[n_] := wt[Floor[n/6]] + f[n - 6 Floor[n/6]];
    A151904[n_] := (3^A151902[n] - 1)/2;
    a[n_] := Module[{k, j}, Switch[n, 0, 0, 1, 1, 2, 0, _, k = Floor[Log2[n/3]]; j = n - 3*2^k; A151904[j]]];
    Table[a[n], {n, 0, 90}] (* Jean-François Alcover, Feb 16 2023, after Maple code *)