cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151908 Number of nonisomorphic cube tilings of dimension n which can be constructed using the recipe presented at the beginning of Section 3 of the Lagarias-Shor paper.

This page as a plain text file.
%I A151908 #11 May 10 2019 16:06:20
%S A151908 1,2,3,7,22,95
%N A151908 Number of nonisomorphic cube tilings of dimension n which can be constructed using the recipe presented at the beginning of Section 3 of the Lagarias-Shor paper.
%C A151908 A weak lower bound for a(8) is 404.
%C A151908 It appears that there is exactly one trivial tiling in each dimension. If so, and this tiling is excluded, we get a sequence which potentially matches two existing sequences in the OEIS.
%H A151908 J. C. Lagarias and P. W. Shor, <a href="http://math.mit.edu/~shor/papers/cube-tilings.pdf">Cube-tilings of R^n and nonlinear codes</a>, preprint, 1993.
%H A151908 J. C. Lagarias and P. W. Shor, <a href="https://doi.org/10.1007/BF02574014">Cube-tilings of R^n and nonlinear codes</a>, Discrete and Computational Geometry, Vol. 11, pp. 359-391, 1994.
%K A151908 nonn,hard,more
%O A151908 2,2
%A A151908 _Peter Shor_, Jul 30 2009