cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151925 Write n as a sum of positive squares a^2+b^2+c^2+... with gcd(a,b,...) = 1; a(n) = minimal number of squares needed.

Original entry on oeis.org

1, 2, 3, 4, 2, 3, 4, 5, 3, 2, 3, 4, 2, 3, 4, 5, 2, 3, 3, 4, 3, 3, 4, 5, 2, 2, 3, 4, 2, 3, 4, 5, 3, 2, 3, 4, 2, 3, 4, 5, 2, 3, 3, 4, 3, 3, 4, 5, 3, 2, 3, 4, 2, 3, 4, 5, 3, 2, 3, 4, 2, 3, 4, 5, 2, 3, 3, 4, 3, 3, 4, 5, 2, 2, 3, 4, 3, 3, 4, 5, 3, 2, 3, 4, 2, 3, 4, 5, 2, 3, 3, 4, 3, 3, 4, 5, 2, 3, 3
Offset: 1

Views

Author

N. J. A. Sloane and Vinay Vaishampayan, Aug 06 2009, Aug 07 2009

Keywords

Comments

Similar to A002828, but only now primitive representations are allowed.
Of course a(n) >= A002828(n).
From Lagrange's theorem, a(n) <= 5 (see also Estermann, Grosswald, Th. 3, p. 176).
Furthermore, it appears (and should be easy to prove) that:
a(n) = 1 iff n=1
a(n) = 2 iff n in A008784\{1}
a(n) = 3 iff n in A151926
a(n) = 4 iff n == 4 or 7 mod 8
a(n) = 5 iff n == 0 mod 8

Examples

			..... n .. a(n) ..<- Numbers when squared add to n ->
-----------------------------------------------------
......1......1......1
......2......2......1......1
......3......3......1......1......1
......4......4......1......1......1......1
......5......2......1......2
......6......3......1......1......2
......7......4......1......1......1......2
......8......5......1......1......1......1......2
......9......3......1......2......2
.....10......2......1......3
.....11......3......1......1......3
.....12......4......1......1......1......3
.....13......2......2......3
.....14......3......1......2......3
.....15......4......1......1......2......3
.....16......5......1......1......1......2......3
.....17......2......1......4
.....18......3......1......1......4
.....19......3......1......3......3
.....20......4......1......1......3......3
		

References

  • Estermann, T., On the representations of a number as a sum of squares, Acta Arith., 45 (1937), 93-125.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985.