A151944 Square array read by antidiagonals: T(m,n) = maximal number of moves required for the m X n generalization of the sliding block 15-puzzle (or fifteen-puzzle).
0, 1, 1, 2, 6, 2, 3, 21, 21, 3, 4, 36, 31, 36, 4, 5, 55, 53, 53, 55, 5, 6, 80, 84, 80, 84, 80, 6, 7, 108
Offset: 1
Examples
Array begins: .n\m...1...2...3...4...5...6...7...8...9 .---------------------------------------- .1.|...0...1...2...3...4...5...6...7...8 .2.|...1...6..21..36..55..80.108.140 .3.|...2..21..31..53..84 .4.|...3..36..53..80 .5.|...4..55..84 .6.|...5..80 .7.|...6.108 .8.|...7.140 .9.|...8
Links
- Richard Korf, Linear-time Disk-Based Implicit Graph Search, Journal of the ACM 55 (2008), No. 6.
- Anton Kulchitsky, Comments on the Fifteen Puzzle [The entries for the 3x4 puzzle are wrong. The second "8" should be "11" in each of the 18 cases.- _Brian Almond_, Oct 10 2021]
Crossrefs
Programs
-
Python
# alst(), moves(), swap() in A089473 def T(m, n): # chr(45) is '-' start, shape = "".join(chr(45+i) for i in range(m*n)), (m, n) return len(alst(start, shape))-1 def auptodiag(maxd): for d in range(1, maxd+1): for m in range(1, d+1): n = d-m+1 print(T(m, d-m+1), end=", ") auptodiag(5) # Michael S. Branicky, Aug 02 2021
Extensions
Extensions from Korf's 2008 publication, with corrections, Tomas Rokicki, Aug 17 2011
Comments