This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A151954 #16 Nov 05 2017 08:07:26 %S A151954 1,1,3,6,16,27,79,126,331,632,1436,2509,6800,11218,26044,51958,114941, %T A151954 205183,502228,875545,2027193,3963938,8389190,15504996,37555290, %U A151954 66502859,145809046,292860564,621638120,1156065731,2701045579 %N A151954 Expansion of Product_{k>0} (1-k^2*x^k)^(-1/k). %H A151954 Seiichi Manyama, <a href="/A151954/b151954.txt">Table of n, a(n) for n = 0..3149</a> %F A151954 a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} A073705(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Nov 05 2017 %F A151954 From _Vaclav Kotesovec_, Nov 05 2017: (Start) %F A151954 a(n) ~ c * 3^(2*n/3) / n^(2/3), where %F A151954 c = 4.674336739118905298732313884863019... if mod(n,3)=0 %F A151954 c = 4.299861572054701010776554223312792... if mod(n,3)=1 %F A151954 c = 4.239106098573472870377481583112857... if mod(n,3)=2 %F A151954 (End) %t A151954 nmax = 40; CoefficientList[Series[Product[(1-k^2*x^k)^(-1/k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 05 2017 *) %Y A151954 Cf. A028342, A073705, A077335. %K A151954 nonn %O A151954 0,3 %A A151954 _Franklin T. Adams-Watters_, Jul 03 2009