cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151975 The number of ways one can flip seven consecutive tails (or heads) when flipping a coin n times.

This page as a plain text file.
%I A151975 #40 Jan 02 2019 16:25:46
%S A151975 0,0,0,0,0,0,0,1,3,8,20,48,112,256,576,1279,2811,6126,13256,28512,
%T A151975 61008,129952,275712,582913,1228551,2582048,5412984,11321744,23631056,
%U A151975 49229312,102377216,212560127,440668919,912310222,1886316324,3895528632,8035861664
%N A151975 The number of ways one can flip seven consecutive tails (or heads) when flipping a coin n times.
%C A151975 a(n-1) is the number of compositions of n with at least one part >=8. - _Joerg Arndt_, Aug 06 2012
%H A151975 Colin Barker, <a href="/A151975/b151975.txt">Table of n, a(n) for n = 0..1000</a>
%H A151975 Benjamin E. Merkel, <a href="http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307442290">Probabilities of Consecutive Events in Coin Flipping</a>, OhioLINK, 2011
%H A151975 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1,-1,-1,-1,-1,-1,-2).
%F A151975 a(n) = A000079(n) - A066178(n+1).
%F A151975 G.f.: x^7 / ((2*x-1)*(x^7+x^6+x^5+x^4+x^3+x^2+x-1)). - _Colin Barker_, Oct 16 2015
%e A151975 a(0)=0 means that there are no cases of seven consecutive tails (or heads) in zero coin flips.  Likewise, a(1)=a(2)=...=a(6)=0.  a(7)=1 since there is exactly one case of seven consecutive tails in seven coin flips.
%o A151975 (PARI) N=66;  x='x+O('x^N);
%o A151975 gf = (1-x)/(1-2*x); /* A011782(n): compositions of n */
%o A151975 gf -= 1/(1 - (x+x^2+x^3+x^4+x^5+x^6+x^7)); /* A066178(n): compositions of n into parts <=7 */
%o A151975 v151975=Vec(gf + 'a0);  v151975[1]=0; /* kludge to get all terms */
%o A151975 v151975 /* show terms */
%o A151975 /* _Joerg Arndt_, Aug 06 2012 */
%o A151975 (PARI) concat(vector(7), Vec(x^7/((2*x-1)*(x^7+x^6+x^5+x^4+x^3+x^2+x-1)) + O(x^100))) \\ _Colin Barker_, Oct 16 2015
%Y A151975 Cf. A050231, A050232, A050233, A143662.
%K A151975 nonn,easy
%O A151975 0,9
%A A151975 _Benjamin Merkel_, Aug 05 2012