This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A151991 #16 Aug 08 2023 12:19:34 %S A151991 1,3,5,7,9,11,13,17,19,21,23,25,27,29,31,33,37,39,41,43,47,49,51,53, %T A151991 57,59,61,67,69,71,73,79,81,83,87,89,93,95,97,101,103,107,109,111,113, %U A151991 115,121,123,125,127,129,131,133,137,139,141,145,147,149,151,155,157,159 %N A151991 Numbers k with the property that (k-x)*(k-y)*(k-z) = x*y*z has no integer solutions 0 < x,y,z < k. %C A151991 All odd primes are terms of this sequence. %e A151991 15 is not a term of this sequence because (15-x)*(15-y)*(15-z) = x*y*z has the solution (5,5,12). %o A151991 (Python) %o A151991 def exis(n): %o A151991 for x in range(1,n): %o A151991 for y in range(x+1): %o A151991 for z in range(y+1): %o A151991 if x*y*z==(k-x)*(k-y)*(k-z): %o A151991 return True %o A151991 return False %o A151991 for k in range(1, 200, 2): %o A151991 if not exis(k): %o A151991 print(str(k), end=',') %o A151991 (PARI) is(n)=for(x=1,n-1,for(y=1,x, my(t=(n-x)*(n-y),z=t*n/(x*y+t)); if(denominator(z)==1 && 0 < z && z < n, return(0)))); 1 \\ _Charles R Greathouse IV_, Dec 09 2014 %Y A151991 Cf. A065091 (odd primes). %K A151991 nonn %O A151991 1,2 %A A151991 Nurdin Takenov (greanvert(AT)gmail.com), Sep 14 2009 %E A151991 Edited by _Charles R Greathouse IV_, Dec 09 2014