This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152000 #21 Aug 24 2019 12:14:57 %S A152000 2,6,10,30,34,42,78,102,110,114,170,210,222,330,390,410,438,510,514, %T A152000 546,570,582,654,714,798,930,978,1010,1110,1158,1218,1230,1326,1482, %U A152000 1542,1554,1806,1830,1870,1938,2190,2310,2510,2530 %N A152000 a(n) is squarefree and such that for every prime p|a(n) and every prime q|p-1 then q|a(n) holds. %C A152000 a(n) is a squarefree valid base. %C A152000 Numbers m > 1 such that m equals A007947(A002618(m)). - _Jon Maiga_, Aug 08 2019 %H A152000 Jinyuan Wang, <a href="/A152000/b152000.txt">Table of n, a(n) for n = 1..10000</a> %H A152000 J. Jimenez Urroz and J. Luis A.Yebra, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Yebra/yebra4.html">On the equation a^x=x mod b^n</a>, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.8. %p A152000 A152000 := proc(n) %p A152000 if n = 1 then %p A152000 2; %p A152000 else %p A152000 for a from procname(n-1)+1 do %p A152000 if issqrfree(a) then %p A152000 pdvs := numtheory[factorset](a) ; %p A152000 aworks := true; %p A152000 for p in numtheory[factorset](a) do %p A152000 for q in numtheory[factorset](p-1) do %p A152000 if a mod q = 0 then %p A152000 ; %p A152000 else %p A152000 aworks := false; %p A152000 end if; %p A152000 end do: %p A152000 end do: %p A152000 if aworks then %p A152000 return a; %p A152000 end if; %p A152000 end if; %p A152000 end do: %p A152000 end if; %p A152000 end proc: # _R. J. Mathar_, Jun 01 2013 %t A152000 rad[n_] := Times @@ (First@# & /@ FactorInteger@n); %t A152000 Select[Range[2, 2530], # == rad[#*EulerPhi[#]] &] (* _Jon Maiga_, Aug 08 2019 *) %o A152000 (PARI) is(m) = factorback(factorint(m*eulerphi(m))[, 1]) == m && m > 1; \\ _Jinyuan Wang_, Aug 08 2019 %Y A152000 Cf. A002618, A007947, A151999. %K A152000 easy,nonn %O A152000 1,1 %A A152000 J. Luis, A. Yebra and J. Jimenez Urroz, Nov 19 2008 %E A152000 Corrected and extended by _Michel Marcus_, Jun 01 2013