cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152005 Numbers whose square is the product of two distinct tetrahedral numbers A000292.

This page as a plain text file.
%I A152005 #31 Jan 18 2024 09:58:51
%S A152005 2,140,280,1092,166460,189070,665840,804540,845460,34250920,38336088,
%T A152005 133784560,138535992,225792840,4998790160,6301258040,7559616818,
%U A152005 8367691640,39991371446,104637102152,227490888350,1497809326860,296523233581822
%N A152005 Numbers whose square is the product of two distinct tetrahedral numbers A000292.
%C A152005 There may be values that are not given in the recurrence shown. This sequence is suggested by Ulas, p. 11, who supplied the recurrence.
%C A152005 a(24) > 3*10^14. - _Donovan Johnson_, Jan 11 2012
%H A152005 Maciej Ulas, <a href="http://arxiv.org/abs/0811.2477">On certain Diophantine equations related to triangular and tetrahedral numbers</a>, arXiv:0811.2477 [math.NT], 2008.
%F A152005 a(n) = T(i)*T(j) where T(k) = A000292(k) = C(k+2,3) = k*(k+1)*(k+2)/6.
%e A152005 From _R. J. Mathar_, Jan 22 2009: (Start)
%e A152005 2 is in the sequence because 2^2 = 4*1 = T(2)*T(1).
%e A152005 140 is in the sequence 140^2 = 560*35 = T(14)*T(5) = 19600*1 = T(48)*T(1).
%e A152005 280 is in the sequence because 280^2 = 19600*4 = T(48)*T(2).
%e A152005 1092 is in the sequence because 1092^2 = 3276*364 = T(26)*T(12). (End)
%t A152005 (* This program is not suitable to compute more than a dozen terms. *)
%t A152005 terms = 12; imin = 1; imax = 3000;
%t A152005 Union[Reap[Do[k2 = i(i+1)(i+2)/6 j(j+1)(j+2)/6; k = Sqrt[k2]; If[IntegerQ[k], Print[k]; Sow[k]], {i, imin, imax}, {j, i+1, imax}]][[2, 1]]][[1 ;; terms]] (* _Jean-François Alcover_, Oct 31 2018 *)
%Y A152005 Cf. A000292, A175497 (products distinct triangular numbers).
%K A152005 nonn,more
%O A152005 1,1
%A A152005 _Jonathan Vos Post_, Nov 19 2008
%E A152005 Sequence replaced by sequence with no intermediate terms missing by _R. J. Mathar_, Jan 22 2009
%E A152005 a(15)-a(18) from _Donovan Johnson_, Jan 24 2009
%E A152005 a(19)-a(23) from _Donovan Johnson_, Jan 11 2012