This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152024 #10 Jul 31 2022 07:46:14 %S A152024 2,3,11,53,103,163,41,16481,1468457,1456321,139241,1796801, %T A152024 34361893981,15549624751,461702183,65026777,893977617157,17562703393, %U A152024 482455223267,85836476923,352463,809358677,499243508845229,1802157757041847990541 %N A152024 Largest prime factor in the subfactorial of n. %H A152024 Amiram Eldar, <a href="/A152024/b152024.txt">Table of n, a(n) for n = 3..81</a> %H A152024 Dario Alpern, <a href="https://www.alpertron.com.ar/ECM.HTM">Factorization using the Elliptic Curve Method</a>. %H A152024 Amiram Eldar, <a href="/A152024/a152024.txt">Table of prime factors of A000166(n) for n = 3..81</a> (calculated with Dario Alpern's ECM) %F A152024 a(n) = A006530(A000166(n)). - _Amiram Eldar_, Jul 31 2022 %e A152024 For n=5 (the third member of the sequence), the number of derangements is 44, thus a(5) = 11, the largest prime factor of 44. %t A152024 Table[FactorInteger[Subfactorial[n]][[-1, 1]], {n, 3, 30}] (* _Amiram Eldar_, Jul 31 2022 *) %o A152024 (PARI) a(n) = {fn = factor(round(n!/exp(1))); fn[#fn[, 1], 1]} \\ _Michel Marcus_, Jun 01 2013 %Y A152024 Cf. A000166, A006530. %K A152024 nonn %O A152024 3,1 %A A152024 Albert Moes (albertmoes(AT)freeler.nl), Nov 20 2008 %E A152024 Corrected and extended by _Michel Marcus_, Jun 01 2013