This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152029 #29 Mar 11 2023 14:31:05 %S A152029 1,2,16,240,5376,161280,6082560,276756480,14760345600,903333150720, %T A152029 62412108595200,4805732361830400,408117579035443200, %U A152029 37896632339005440000,3819980539771748352000,415422883700177633280000,48482294191832495554560000,6044126009248451112468480000 %N A152029 a(n) = 2^n*(2*n)!/((n+1)!). %H A152029 Robert Israel, <a href="/A152029/b152029.txt">Table of n, a(n) for n = 0..334</a> %H A152029 K. Casteels and B. Stevens, <a href="http://dx.doi.org/10.1016/j.disc.2009.03.002">Universal cycles of (n-1)-partitions of an n-set</a>, Discr. Math., 309 (2009), 5332-5340. %F A152029 E.g.f 2/(1+(1-8*x)^(1/2)). - _Sergei N. Gladkovskii_, Oct 26 2012 %F A152029 a(n) = 2^n * A001761(n) = A065140(n)/(n+1)!. - _Michel Marcus_, Jun 02 2013 %F A152029 G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 2*x/(2*x + (k+2)/((2*k+1)*(2*k+2))/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 03 2013 %F A152029 4*(n+1)*(2*n+1)*a(n) = (n+2)*a(n+1). - _Robert Israel_, Jan 25 2017 %F A152029 E.g.f.: 1/(1 - 2*x/(1 - 2*x/(1 - 2*x/(1 - 2*x/(1 - 2*x/(1 - ...)))))), a continued fraction. - _Ilya Gutkovskiy_, May 10 2017 %p A152029 seq(2^n*(2*n)!/(n+1)!,n=0..40); # _Robert Israel_, Jan 25 2017 %t A152029 Table[(2^n) (2 n)! / (n + 1)!, {n, 0, 20}] (* _Vincenzo Librandi_, Jan 27 2017 *) %t A152029 With[{nn=20},CoefficientList[Series[2/(1+(1-8x)^(1/2)),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Mar 11 2023 *) %o A152029 (PARI) a(n) = 2^n*(2*n)!/(n+1)! \\ _Michel Marcus_, Jun 02 2013 %o A152029 (Magma) [2^n*Factorial(2*n)/Factorial(n+1): n in [0..20]]; // _Vincenzo Librandi_, Jan 27 2017 %K A152029 nonn %O A152029 0,2 %A A152029 _N. J. A. Sloane_, Sep 15 2009