cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152072 Triangle read by rows: T(n,k) = the largest product of a partition of n into k positive integers (1 <= k <= n).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 5, 6, 4, 2, 1, 6, 9, 8, 4, 2, 1, 7, 12, 12, 8, 4, 2, 1, 8, 16, 18, 16, 8, 4, 2, 1, 9, 20, 27, 24, 16, 8, 4, 2, 1, 10, 25, 36, 36, 32, 16, 8, 4, 2, 1, 11, 30, 48, 54, 48, 32, 16, 8, 4, 2, 1, 12, 36, 64, 81, 72, 64, 32, 16, 8, 4, 2, 1
Offset: 1

Views

Author

N. J. A. Sloane, Sep 16 2009

Keywords

Comments

The optimal partition is P(n,k) = ([(n+i)/k] : 0 <= i < k).
The table also appears in the solution of a maximum problem in arithmetic considered by K. Mahler and J. Popken. - J. van de Lune and Juan Arias-de-Reyna, Jan 05 2012
T(n,k) is the number of ways to select k class representatives from the mod k partitioning of {1,2,...,n}. - Dennis P. Walsh, Nov 27 2012
T(n,k) is the maximum number of length-k longest common subsequences of a pair of length-n strings. - Cees H. Elzinga, Jun 08 2014

Examples

			Triangle begins:
1
2,1
3,2,1
4,4,2,1
5,6,4,2,1
6,9,8,4,2,1
7,12,12,8,4,2,1
8,16,18,16,8,4,2,1
9,20,27,24,16,8,4,2,1
10,25,36,36,32,16,8,4,2,1
...
T(7,3)=12 since there are 12 ways to selected class representatives from the mod 3 partitioning of {1,..,7} = {1,4,7} U {2,5} U {3,6}. - _Dennis P. Walsh_, Nov 27 2012
		

References

  • Cees H. Elzinga, M. Studer, Normalization of Distance and Similarity in Sequence Analysis in G. Ritschard & M. Studer (eds), Proceedings of the International Conference on Sequence Analysis and Related Methods, Lausanne, June 8-10, 2016, pp 445-468.
  • K. Mahler and J. Popken, Over een Maximumprobleem uit de Rekenkunde (in Dutch), (On a Maximum Problem in Arithmetic), Nieuw Archief voor Wiskunde (3) 1 (1953), 1-15.
  • David W. Wilson, Posting to Sequence Fans mailing List, Mar 11 2009

Crossrefs

T(n,1) = n = A000027(n).
T(n,2) = A002620(n-2).
T(n,3) = A006501(n).
T(n,4) = A008233(n).
T(n,5) = A008382(n).
T(n,6) = A008881(n).
T(n,7) = A009641(n).
T(n,8) = A009694(n).
T(n,9) = A009714(n).
T(n,n)=1, T(n,n-1)=A040000(n+1), T(n,n-2)=A113311(n+1).
Cf. A152074 (row sums).

Programs

  • Maple
    T:= (n,k)-> mul(floor((n+i)/k), i=0..k-1):
    seq(seq(T(n, k), k=1..n), n=1..12);
  • Mathematica
    T[n_, k_] := Product[ Floor[(n + i)/k], {i, 0, k - 1}]; Flatten@ Table[ T[n, k], {n, 12}, {k, n}] (* Robert G. Wilson v, Jul 08 2016 *)

Formula

T(n,k) = PROD(0 <= i < k; [(n+i)/k]).
T(n,n-d) = 2^d = A000079(d) (d <= n/2).
MAX(1 <= k <= n, T(n,k)) = A000792(n).
T(n,k) = (ceiling(n/k))^(n mod k)*(floor(n/k))^(k-n mod k). - Dennis P. Walsh, Nov 27 2012
Sum_{k = 1..n} T(n,k) = A152074(n). - David W. Wilson, Jul 07 2016