cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152109 a(n) = ((8+sqrt(5))^n + (8-sqrt(5))^n)/2.

This page as a plain text file.
%I A152109 #16 Sep 08 2022 08:45:39
%S A152109 1,8,69,632,6041,59368,593469,5992792,60870001,620345288,6334194549,
%T A152109 64746740792,662230374281,6775628281768,69338460425709,
%U A152109 709653298187032,7263483605875681,74346193100976008,760993556868950949
%N A152109 a(n) = ((8+sqrt(5))^n + (8-sqrt(5))^n)/2.
%H A152109 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (16, -59).
%F A152109 From _Philippe Deléham_, Nov 26 2008: (Start)
%F A152109 a(n) = 16*a(n-1) - 59*a(n-2), n > 1; a(0)=1, a(1)=8.
%F A152109 G.f.: (1-8*x)/(1-16*x+59*x^2).
%F A152109 a(n) = (Sum_{k=0..n} A098158(n,k)*8^(2*k)*5^(n-k))/8^n. (End)
%t A152109 LinearRecurrence[{16,-59},{1,8},30] (* _Harvey P. Dale_, Dec 18 2011 *)
%o A152109 (Magma) Z<x>:= PolynomialRing(Integers()); N<r5>:=NumberField(x^2-5); S:=[ ((8+r5)^n+(8-r5)^n)/2: n in [0..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Nov 26 2008
%K A152109 nonn
%O A152109 0,2
%A A152109 Al Hakanson (hawkuu(AT)gmail.com), Nov 24 2008
%E A152109 Extended beyond a(6) by _Klaus Brockhaus_, Nov 26 2008