cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152112 Number of increasing initial sequences of bases of order 3.

This page as a plain text file.
%I A152112 #15 Feb 24 2023 11:25:23
%S A152112 1,1,3,13,86,760,8518
%N A152112 Number of increasing initial sequences of bases of order 3.
%C A152112 Using the terminology of A008932, call a set A a basis of order h if every number can be written as the sum of h (not necessarily distinct) elements of A. Call a basis an increasing basis of order h if its elements are arranged in increasing order, a0<a1<a2<...
%C A152112 Consider the set of all initial subsequences of any length {a0, a1, a2, ..., an} of all the increasing bases. These can be ordered in lexicographic order, giving, for h = 3:
%C A152112 0
%C A152112 0,1
%C A152112 0,1,2
%C A152112 0,1,3
%C A152112 0,1,4
%t A152112 f[A_]:=
%t A152112 (AAA={};
%t A152112 For [ii=1,ii<=Length[A],ii++,
%t A152112 For[jj=1,jj<=Length[A],jj++,
%t A152112 For [kk=1,kk<=Length[A],kk++,
%t A152112 AAA=Union[AAA,{A[[ii]]+A[[jj]]+A[[kk]]}]]]];
%t A152112 For[ii=1,ii<=Length[AAA],ii++,
%t A152112 If[ii==Length[AAA],max=ii-1];
%t A152112 If[AAA[[ii]]>ii-1,max=ii-2;Break[]]]);
%t A152112 index=1;
%t A152112 seq[1]={0,1};
%t A152112 rindex=1;
%t A152112 newindex=1;
%t A152112 For[k=1,k<=5,k++,
%t A152112 jbegin=rindex;jend=index;
%t A152112 For[j=jbegin,j<=jend,j++,
%t A152112 f[seq[j]];
%t A152112 For[i=Max[seq[j]]+1,i<=max+1,i++,index++;seq[index]=Append[seq[rindex],i]
%t A152112 ];rindex=rindex+1;
%t A152112 ]]
%t A152112 For[i=1,i<=index,i++,Print[i," ",seq[i]]] (* _David S. Newman_, Dec 29 2014 *)
%Y A152112 Cf. A008932, A152111.
%K A152112 nonn,more
%O A152112 1,3
%A A152112 _David S. Newman_, Mar 22 2009
%E A152112 a(6)-a(7) from _David S. Newman_, Dec 29 2014