This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152112 #15 Feb 24 2023 11:25:23 %S A152112 1,1,3,13,86,760,8518 %N A152112 Number of increasing initial sequences of bases of order 3. %C A152112 Using the terminology of A008932, call a set A a basis of order h if every number can be written as the sum of h (not necessarily distinct) elements of A. Call a basis an increasing basis of order h if its elements are arranged in increasing order, a0<a1<a2<... %C A152112 Consider the set of all initial subsequences of any length {a0, a1, a2, ..., an} of all the increasing bases. These can be ordered in lexicographic order, giving, for h = 3: %C A152112 0 %C A152112 0,1 %C A152112 0,1,2 %C A152112 0,1,3 %C A152112 0,1,4 %t A152112 f[A_]:= %t A152112 (AAA={}; %t A152112 For [ii=1,ii<=Length[A],ii++, %t A152112 For[jj=1,jj<=Length[A],jj++, %t A152112 For [kk=1,kk<=Length[A],kk++, %t A152112 AAA=Union[AAA,{A[[ii]]+A[[jj]]+A[[kk]]}]]]]; %t A152112 For[ii=1,ii<=Length[AAA],ii++, %t A152112 If[ii==Length[AAA],max=ii-1]; %t A152112 If[AAA[[ii]]>ii-1,max=ii-2;Break[]]]); %t A152112 index=1; %t A152112 seq[1]={0,1}; %t A152112 rindex=1; %t A152112 newindex=1; %t A152112 For[k=1,k<=5,k++, %t A152112 jbegin=rindex;jend=index; %t A152112 For[j=jbegin,j<=jend,j++, %t A152112 f[seq[j]]; %t A152112 For[i=Max[seq[j]]+1,i<=max+1,i++,index++;seq[index]=Append[seq[rindex],i] %t A152112 ];rindex=rindex+1; %t A152112 ]] %t A152112 For[i=1,i<=index,i++,Print[i," ",seq[i]]] (* _David S. Newman_, Dec 29 2014 *) %Y A152112 Cf. A008932, A152111. %K A152112 nonn,more %O A152112 1,3 %A A152112 _David S. Newman_, Mar 22 2009 %E A152112 a(6)-a(7) from _David S. Newman_, Dec 29 2014