cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152155 Minimal residues of Pepin's Test for Fermat Numbers using the base 3.

This page as a plain text file.
%I A152155 #13 Apr 03 2023 10:36:11
%S A152155 0,-1,-1,-1,-1,10324303,-6586524273069171148,
%T A152155 110780954395540516579111562860048860420,
%U A152155 5864545399742183862578018016183410025465491904722516203269973267547486512819
%N A152155 Minimal residues of Pepin's Test for Fermat Numbers using the base 3.
%C A152155 For n>=1 the Fermat Number F(n) is prime if and only if 3^((F(n) - 1)/2) is congruent to -1 (mod F(n)).
%C A152155 Any positive integer k for which the Jacobi symbol (k|F(n)) is -1 can be used as the base instead.
%D A152155 M. Krizek, F. Luca & L. Somer, 17 Lectures on Fermat Numbers, Springer-Verlag NY 2001, pp. 42-43.
%H A152155 Dennis Martin, <a href="/A152155/b152155.txt">Table of n, a(n) for n = 0..11</a>
%H A152155 Chris Caldwell, The Prime Pages: <a href="https://t5k.org/glossary/page.php?sort=PepinsTest">Pepin's Test</a>.
%F A152155 a(n) = 3^((F(n) - 1)/2) (mod F(n)), where F(n) is the n-th Fermat Number, using the symmetry mod (so (-F(n)-1)/2 < a(n) < (F(n)-1)/2).
%e A152155 a(4) = 3^(32768) (mod 65537) = 65536 = -1 (mod F(4)), therefore F(4) is prime.
%e A152155 a(5) = 3^(2147483648) (mod 4294967297) = 10324303 (mod F(5)), therefore F(5) is composite.
%p A152155 f:= proc(n) local F;
%p A152155    F:= 2^(2^n) + 1;
%p A152155    `mods`(3 &^ ((F-1)/2), F)
%p A152155 end proc:
%p A152155 seq(f(n), n=0..10); # _Robert Israel_, Dec 19 2016
%o A152155 (PARI) a(n)=centerlift(Mod(3,2^(2^n)+1)^(2^(2^n-1))) \\ _Jeppe Stig Nielsen_, Dec 19 2016
%Y A152155 A000215, A019434, A152153, A152154, A152156.
%K A152155 sign
%O A152155 0,6
%A A152155 Dennis Martin (dennis.martin(AT)dptechnology.com), Nov 27 2008