A152156 Minimal residues of Pepin's Test for Fermat Numbers using either 5 or 10 for the base.
-1, 0, -1, -1, -1, -810129131, -1220845804166146754, 6964187975677595099156927503004398881, 14553806122642016769237504145596730952769427034161327480375008633175279343120
Offset: 0
Keywords
Examples
a(4) = 5^(32768) (mod 65537) = 65536 = -1 (mod F(4)), therefore F(4) is prime. a(5) = 5^(2147483648) (mod 4294967297) = -810129131 (mod F(5)), therefore F(5) is composite.
References
- M. Krizek, F. Luca & L. Somer, 17 Lectures on Fermat Numbers, Springer-Verlag NY 2001, pp. 42-43.
Links
- Dennis Martin, Table of n, a(n) for n = 0..11
- Chris Caldwell, The Prime Pages: Pepin's Test.
Formula
a(n) = 5^((F(n) - 1)/2) (mod F(n)), where F(n) is the n-th Fermat Number
Comments