cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152198 Triangle read by rows, A007318 rows repeated.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1
Offset: 0

Views

Author

Gary W. Adamson, Nov 28 2008

Keywords

Comments

Eigensequence of the triangle = A051163: (1, 2, 5, 12, 30, 76,...)
Another version of A152815. - Philippe Deléham, Dec 13 2008
Row sums : A016116(n); Diagonal sums: A000931(n+5). - Philippe Deléham, Dec 13 2008
Triangle, with zeros omitted, given by (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 16 2012
Sums along rising diagonals are A134816. - John Molokach, Jul 09 2013

Examples

			The triangle starts
1;
1;
1, 1;
1, 1;
1, 2, 1;
1, 2, 1;
1, 3, 3, 1;
1, 3, 3, 1;
1, 4, 6, 4, 1;
1, 4, 6, 4, 1;
1, 5, 10, 10, 5, 1;
1, 5, 10, 10, 5, 1;
...
Triangle (1,0,-1,0,0,...) DELTA (0,1,-1,0,0,...) begins:
1
1, 0
1, 1, 0
1, 1, 0, 0
1, 2, 1, 0, 0
1, 2, 1, 0, 0, 0
1, 3, 3, 1, 0, 0, 0
1, 3, 3, 1, 0, 0, 0, 0
1, 4, 6, 4, 1, 0, 0, 0, 0
1, 4, 6, 4, 1, 0, 0, 0, 0, 0
1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0...
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Binomial[ Floor[n/2], k]; Table[t[n, k], {n, 0, 17}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Sep 13 2012 *)

Formula

Triangle read by rows, Pascal's triangle rows repeated.
Equals inverse binomial transform of A133156 unsigned.
G.f. : (1+x)/(1-(1+y)*x^2). - Philippe Deléham, Jan 16 2012
Sum_{k, 0<=k<=n} T(n,k)*x^k = A057077(n), A019590(n+1), A000012(n), A016116(n), A108411(n), A074872(n+1) for x = -2, -1, 0, 1, 2, 4 respectively. - Philippe Deléham, Jan 16 2012
T(n,k) = A065941(n-k, n-2*k) = abs(A108299(n-k, n-2*k)). - Johannes W. Meijer, Sep 05 2013

Extensions

More terms from Philippe Deléham, Dec 14 2008