A152198 Triangle read by rows, A007318 rows repeated.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1
Offset: 0
Examples
The triangle starts 1; 1; 1, 1; 1, 1; 1, 2, 1; 1, 2, 1; 1, 3, 3, 1; 1, 3, 3, 1; 1, 4, 6, 4, 1; 1, 4, 6, 4, 1; 1, 5, 10, 10, 5, 1; 1, 5, 10, 10, 5, 1; ... Triangle (1,0,-1,0,0,...) DELTA (0,1,-1,0,0,...) begins: 1 1, 0 1, 1, 0 1, 1, 0, 0 1, 2, 1, 0, 0 1, 2, 1, 0, 0, 0 1, 3, 3, 1, 0, 0, 0 1, 3, 3, 1, 0, 0, 0, 0 1, 4, 6, 4, 1, 0, 0, 0, 0 1, 4, 6, 4, 1, 0, 0, 0, 0, 0 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0...
Programs
-
Mathematica
t[n_, k_] := Binomial[ Floor[n/2], k]; Table[t[n, k], {n, 0, 17}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Sep 13 2012 *)
Formula
Triangle read by rows, Pascal's triangle rows repeated.
Equals inverse binomial transform of A133156 unsigned.
G.f. : (1+x)/(1-(1+y)*x^2). - Philippe Deléham, Jan 16 2012
Extensions
More terms from Philippe Deléham, Dec 14 2008
Comments