This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152218 #22 Feb 01 2025 08:42:51 %S A152218 1,4,529,2116,2583,3249,3346,6150,10332,12474,12792,12996,28224,38240, %T A152218 59245,85905,91035,103607,142560,176382,212949,236980,249744,343620, %U A152218 360096,364140,379050,414428,450840,751530,787710,788424,851796,1059474,1132096,1366407 %N A152218 Numbers k such that sigma_2(k)*sigma_1(k)/sigma_0(k) is a perfect square. %H A152218 Amiram Eldar, <a href="/A152218/b152218.txt">Table of n, a(n) for n = 1..500</a> (terms 1..200 from Donovan Johnson) %F A152218 {k: A001157(k)*A000203(k)/A000005(k) in A000290}. %t A152218 fQ[n_] := IntegerQ[ Sqrt[ DivisorSigma[2, n] DivisorSigma[1, n]/DivisorSigma[0, n]]]; k = 1; lst = {}; While[k < 1132096, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst (* _Robert G. Wilson v_, Sep 10 2010 *) %t A152218 Select[Range[137*10^4],IntegerQ[Sqrt[(DivisorSigma[2,#]DivisorSigma[ 1,#])/ DivisorSigma[ 0,#]]]&] (* _Harvey P. Dale_, Jun 18 2018 *) %o A152218 (PARI) isok(k) = {my(f = factor(k)); issquare(sigma(f, 2) * sigma(f) / numdiv(f));} \\ _Amiram Eldar_, Feb 01 2025 %Y A152218 Cf. A000005, A000290, A000203, A001157, A140480, A144695. %K A152218 nonn %O A152218 1,2 %A A152218 _Ctibor O. Zizka_, Nov 29 2008 %E A152218 Correct definition recovered by _Jack Brennen_ %E A152218 12 more terms from _R. J. Mathar_, Aug 25 2010 %E A152218 More terms from _Robert G. Wilson v_, Sep 10 2010