A152250 Eigentriangle, row sums = A001850, the Delannoy numbers.
1, 2, 1, 8, 2, 3, 36, 8, 6, 13, 172, 36, 24, 26, 63, 852, 172, 108, 104, 126, 321, 4324, 852, 516, 468, 504, 642, 1683, 22332, 4324, 2556, 2236, 2268, 2568, 3366, 8989, 116876, 22332, 12972, 11076, 10836, 11556, 13464, 17978, 48639
Offset: 0
Examples
First few rows of the triangle = 1; 2, 1; 8, 2, 3; 36, 8, 6, 13; 172, 36, 24, 26, 63; 852, 172, 108, 104, 126, 321; 4324, 852, 516, 468, 504, 642, 1683; 22332, 4324, 2556, 2236, 2268, 2568, 3366, 8989; 116876, 22332, 12972, 11076, 10836, 11556, 13464, 17978, 48639; ... Row 3 = (36, 8, 6, 13) = termwise products of (36, 8, 2, 1) and (1, 1, 3, 13).
Links
- M. Dziemianczuk, Generalizing Delannoy numbers via counting weighted lattice paths, INTEGERS, 13 (2013), #A54.
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv preprint arXiv:1410.5747 [math.CO], 2014.
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, Discrete Mathematics, Volume 339, Issue 3, 6 March 2016, Pages 1116-1139.
Programs
-
Mathematica
nmax = 8; T[0, 0] = 1; T[n_, 0] := SeriesCoefficient[1/(x + Sqrt[1 - 6x + x^2]), {x, 0, n}]; T[n_, n_] := LegendreP[n - 1, 3]; row[n_] := row[n] = Table[T[m, 0], {m, n, 0, -1}]*Table[T[m, m], {m, 0, n} ]; T[n_, k_] /; 0 < k < n := row[n][[k + 1]]; Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
Comments