This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152262 #36 Aug 06 2024 04:41:55 %S A152262 1,7,55,469,4201,38647,360415,3383989,31878001,300780487,2840172775, %T A152262 26828857909,253476581401,2395031249527,22630944493135, %U A152262 213846879174229,2020725695234401,19094743928789767,180435210107977495 %N A152262 a(n) = 14*a(n-1) - 43*a(n-2), n > 1; a(0)=1, a(1)=7. %C A152262 Binomial transform of A145301. Inverse binomial transform of A152263. - _Philippe Deléham_, Dec 03 2008 %H A152262 Harvey P. Dale, <a href="/A152262/b152262.txt">Table of n, a(n) for n = 0..1000</a> %H A152262 H. D. Nguyen and D. Taggart, <a href="https://citeseerx.ist.psu.edu/pdf/8f2f36f22878c984775ed04368b8893879b99458">Mining the OEIS: Ten Experimental Conjectures</a>, 2013. Mentions this sequence. - From _N. J. A. Sloane_, Mar 16 2014 %H A152262 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (14,-43). %F A152262 a(n) = ((7 + sqrt(6))^n + (7 - sqrt(6))^n)/2. %F A152262 From _Philippe Deléham_, Dec 03 2008: (Start) %F A152262 G.f.: (1-7*x)/(1-14*x+43*x^2). %F A152262 a(n) = Sum_{k=0..n} A098158(n,k)*7^(2k-n)*6^(n-k). (End) %F A152262 a(n) = Sum_{k=0..n} A027907(n,2k)*6^k. - _J. Conrad_, Aug 24 2016 %F A152262 E.g.f.: cosh(sqrt(6)*x)*exp(7*x). - _Ilya Gutkovskiy_, Aug 24 2016 %F A152262 a(n) = m^n*(ChebyshevU(n, 7/m) - (7/m)*ChebyshevU(n-1, 7/m)), with m = sqrt(43). - _G. C. Greubel_, May 23 2023 %t A152262 LinearRecurrence[{14,-43},{1,7},30] (* _Harvey P. Dale_, Apr 26 2015 *) %o A152262 (Magma) Z<x>:= PolynomialRing(Integers()); N<r6>:=NumberField(x^2-6); S:=[ ((7+r6)^n+(7-r6)^n)/2: n in [0..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Dec 03 2008 %o A152262 (Magma) [n le 2 select 7^(n-1) else 14*Self(n-1) -43*Self(n-2): n in [1..30]]; // _G. C. Greubel_, May 23 2023 %o A152262 (SageMath) %o A152262 @CachedFunction %o A152262 def a(n): # a = A152262 %o A152262 if (n<2): return 7^n %o A152262 else: return 14*a(n-1) - 43*a(n-2) %o A152262 [a(n) for n in range(41)] # _G. C. Greubel_, May 23 2023 %Y A152262 Cf. A027907, A098158, A145301, A152263. %K A152262 nonn,easy %O A152262 0,2 %A A152262 Al Hakanson (hawkuu(AT)gmail.com), Dec 01 2008 %E A152262 Name from _Philippe Deléham_, Dec 03 2008