cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152311 Primes p such that the multiplicative order of 2 modulo p is (p-1)/11.

This page as a plain text file.
%I A152311 #13 Nov 23 2024 11:11:24
%S A152311 331,1013,4643,12101,12893,16061,17117,23893,25763,25939,28403,30493,
%T A152311 32429,32957,34739,36389,38149,39139,42043,44771,45541,46861,53923,
%U A152311 57773,59621,60611,81533,85229,87187,89123,92357,96493,100981,105227
%N A152311 Primes p such that the multiplicative order of 2 modulo p is (p-1)/11.
%H A152311 Klaus Brockhaus, <a href="/A152311/b152311.txt">Table of n, a(n) for n=1..1000</a>
%t A152311 okQ[p_] := MultiplicativeOrder[2, p] == (p-1)/11;
%t A152311 Select[Prime[Range[20000]], okQ] (* _Jean-François Alcover_, Nov 23 2024 *)
%o A152311 (Magma) [ p: p in PrimesUpTo(105227) | r eq 1 and Order(R!2) eq q where q,r is Quotrem(p,11) where R is ResidueClassRing(p) ];
%o A152311 (PARI) Vec(select(p->((p!=2) && (znorder(Mod(2, p)) == (p-1)/11)), primes(20000))) \\ _Michel Marcus_, Feb 09 2015
%Y A152311 Cf. A115591, A001133, A001134, A001135, A001136.
%K A152311 nonn
%O A152311 1,1
%A A152311 _Klaus Brockhaus_, Dec 02 2008