cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152427 Primes that have both prime digits (2,3,5,7) and nonprime digits (1,4,6,8,9).

This page as a plain text file.
%I A152427 #21 Feb 01 2013 17:15:38
%S A152427 13,17,29,31,43,47,59,67,71,79,83,97,103,107,113,127,131,137,139,151,
%T A152427 157,163,167,173,179,193,197,211,229,239,241,251,263,269,271,281,283,
%U A152427 293,311,313,317,331,347,349,359,367,379,383,389,397,421,431,433,439
%N A152427 Primes that have both prime digits (2,3,5,7) and nonprime digits (1,4,6,8,9).
%C A152427 A000040 \ A034844 \ A019546.
%C A152427 Cf. A018252.
%F A152427 a(n) ~ n log n
%t A152427 okQ[n_] := Module[{d = Union[IntegerDigits[n]]}, Length[Intersection[d, {2, 3, 5, 7}]] > 0 && Length[Intersection[d, {1, 4, 6, 8, 9}]] > 0]; Select[Prime[Range[100]], okQ] (* _T. D. Noe_, Jan 21 2011 *)
%t A152427 pdQ[n_]:=Module[{idn=Select[IntegerDigits[n],#!=0&]},Count[idn,_?PrimeQ]>0&&Count[idn,_?(!PrimeQ[#]&)]>0]; Select[Prime[Range[100]],pdQ] (* _Harvey P. Dale_, Jan 31 2013 *)
%Y A152427 Cf. A018252, A019546, A034844, A087363, A092621, A092626, A152312, A152313, A152426.
%K A152427 base,easy,nonn
%O A152427 1,1
%A A152427 _Omar E. Pol_, Dec 03 2008
%E A152427 Corrected and extended by _Harvey P. Dale_, Jan 31 2013