This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152429 #13 Sep 08 2022 08:45:39 %S A152429 1,8,73,728,7633,82088,893593,9782648,107374753,1179950408, %T A152429 12973595113,142680249368,1569336258673,17261966423528, %U A152429 189877968549433,2088639343496888,22974941225731393,252723895719373448 %N A152429 a(n) = (11^n + 5^n)/2. %C A152429 Binomial transform of A081343. %C A152429 Inverse binomial transform of A143079. %H A152429 Vincenzo Librandi, <a href="/A152429/b152429.txt">Table of n, a(n) for n = 0..200</a> %H A152429 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (16,-55). %F A152429 a(n) = 16*a(n-1) - 55*a(n-2), with a(0)=1, a(1)=8. %F A152429 G.f.: (1-8*x)/(1 - 16*x + 55*x^2). %F A152429 a(n) = Sum_{k=0..n} A098158(n,k)*8^(2k-n)*9^(n-k). %F A152429 a(n) = ((8 + sqrt(9))^n + (8 - sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008 %F A152429 E.g.f.: (exp(11*x) + exp(5*x))/2. - _G. C. Greubel_, Jan 08 2020 %p A152429 seq( (11^n+5^n)/2, n=0..20); # _G. C. Greubel_, Jan 08 2020 %t A152429 LinearRecurrence[{16,-55}, {1,8}, 20] (* _G. C. Greubel_, Jan 08 2020 *) %o A152429 (Magma) [(11^n+5^n)/2: n in [0..20]]; // _Vincenzo Librandi_, Jun 01 2011 %o A152429 (PARI) vector(21, n, (11^(n-1) + 5^(n-1))/2 ) \\ _G. C. Greubel_, Jan 08 2020 %o A152429 (Sage) [(11^n+5^n)/2 for n in (0..20)] # _G. C. Greubel_, Jan 08 2020 %o A152429 (GAP) List([0..20], n-> (11^n+5^n)/2); # _G. C. Greubel_, Jan 08 2020 %Y A152429 Cf. A162516. %K A152429 nonn,less %O A152429 0,2 %A A152429 _Philippe Deléham_, Dec 03 2008