This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152440 #10 Feb 21 2014 03:56:10 %S A152440 1,1,1,2,3,1,3,9,5,1,5,22,20,7,1,8,51,65,35,9,1,13,111,190,140,54,11, %T A152440 1,21,233,511,490,255,77,13,1,34,474,1295,1554,1035,418,104,15,1,55, %U A152440 942,3130,4578,3762,1925,637,135,17,1,89,1836,7285,12720,12573,7865,3276 %N A152440 Riordan matrix (1/(1-x-x^2),x/(1-x-x^2)^2). %C A152440 From _Philippe Deléham_, Feb 20 2014: (Start) %C A152440 T(n,0) = A000045(n+1); %C A152440 T(n+1,1) = A001628(n); %C A152440 T(n+2,2) = A001873(n); %C A152440 T(n+3,3) = A001875(n). %C A152440 Row sums are A238236(n). (End) %F A152440 a(n,k) = sum( binomial(n-j-k,2k) binomial(n-j-k,j), j=0...(n-k)/2 ) %F A152440 a(n,k) = sum( binomial(i+2k,2k) binomial(n-i+k,i+2k), i=0...(n - k)/2 ) %F A152440 Recurrence: a(n+4,k+1) - 2 a(n+3,k+1) - a(n+3,k) - a(n+2,k+1) + 2 a(n+1,k+1) + a(n,k+1) = 0 %F A152440 GF for columns: 1/(1-x-x^2)(x/(1-x-x^2)^2)^k %F A152440 GF: (1-x-x^2)/((1-x-x^2)^2-xy) %F A152440 T(n,k) = A037027(n+k, 2*k). - _Philippe Deléham_, Feb 20 2014 %e A152440 Triangle begins: %e A152440 1; %e A152440 1, 1; %e A152440 2, 3, 1; %e A152440 3, 9, 5, 1; %e A152440 5, 22, 20, 7, 1; %e A152440 8, 51, 65, 35, 9, 1; %e A152440 13, 111, 190, 140, 54, 11, 1; %e A152440 21, 233, 511, 490, 255, 77, 13, 1, etc. %e A152440 - _Philippe Deléham_, Feb 20 2014 %Y A152440 The first row is given by A000045. %Y A152440 Cf. A037027, A238241. %K A152440 nonn,tabl,easy %O A152440 0,4 %A A152440 _Emanuele Munarini_, Dec 04 2008, Dec 05 2008