This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152443 #14 Jun 24 2025 00:52:40 %S A152443 1,1,2,1,3,1,1,1,5,1,1,1,7,5,8,1,1,1,5,7,11,1,3,5,13,9,7,1,15,1,1,11, %T A152443 17,7,4,1,19,13,5,1,21,1,11,5,23,1,3,7,25,17,13,1,27,11,7,19,29,1,5,1, %U A152443 31,7,32,13,33,1,17,23,35,1,1,1,37,25,19,11,39,1,1,27,41,1,7,17,43,29,11,1,5 %N A152443 a(n) = the largest proper divisor of n that is coprime to d(n), where d(n) = the number of divisors of n. %C A152443 If n is squarefree then a(n) = A032742(n). - _Robert Israel_, Jun 23 2025 %H A152443 Robert Israel, <a href="/A152443/b152443.txt">Table of n, a(n) for n = 2..10000</a> %e A152443 There are 4 divisors of 27. These are 1,3,9,27. The proper divisors of 27 are therefore 1,3,9. The largest of these that is coprime to d(27) = 4 is 9. So a(27) = 9. (Note that in this case, the largest divisor of 27 coprime to 4 is 27, not 9.) %p A152443 f:= proc(n) local d,D; %p A152443 D:= numtheory:-divisors(n); %p A152443 d:= nops(D); %p A152443 max(select(t -> igcd(d,t)=1, D minus {n})) %p A152443 end proc: %p A152443 map(f, [$2..100]); # _Robert Israel_, Jun 23 2025 %t A152443 Table[Max[Select[Drop[Divisors[n], -1], GCD[DivisorSigma[0, n], # ] == 1 &]], {n, 2, 100}] (* _Stefan Steinerberger_, Dec 06 2008 *) %Y A152443 Cf. A000005, A032742, A137926, A152444. %K A152443 nonn,look %O A152443 2,3 %A A152443 _Leroy Quet_, Dec 04 2008 %E A152443 Extended by _Ray Chandler_ and _Stefan Steinerberger_, Dec 05 2008