cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152460 Primes p such that there exist positive integer k and prime q with p > q and 3^k = p + 2q or 3^k = q + 2p.

This page as a plain text file.
%I A152460 #10 Sep 26 2018 12:27:13
%S A152460 3,5,11,13,17,23,29,31,37,43,47,59,67,71,97,101,103,107,109,113,137,
%T A152460 149,157,181,197,229,233,239,251,263,269,271,281,283,307,311,313,331,
%U A152460 347,349,353,359,367,383,431,467,503,523,563,571,587,607,643,647,683,691
%N A152460 Primes p such that there exist positive integer k and prime q with p > q and 3^k = p + 2q or 3^k = q + 2p.
%C A152460 a(n) is the greater of primes (p,q) in representations of a power of 3 in Lemoine-Levy's form p+2q (see A046927)
%C A152460 If 3^n=p+2q, then 3^(n-1)<=max(p,q)<3^n. Therefore the sets of greater primes for different powers of 3 do not intersect.
%F A152460 If A(x) is the counting function of a(n)<=x, then A(x)=O(xloglogx/(logx)^2).
%e A152460 27=5+2*11=13+2*7=17+2*5=23+2*2, so that 11,13,17 and 23 are in the sequence.
%o A152460 (PARI) aa(n)={my(v=[]); forprime(p=2,n\2,q=n-p*2; if(isprime(q),v=concat(v,(max(p,q))))); vecsort(v,,8)};
%o A152460 for(n=2, 7, v=aa(3^n); for(i=1,#v,print1(v[i], ", ")))
%Y A152460 Cf. A103151, A086081, A152451
%K A152460 nonn
%O A152460 1,1
%A A152460 _Vladimir Shevelev_, Dec 05 2008, Dec 12 2008
%E A152460 Program and editing by _Charles R Greathouse IV_, Nov 02 2009