This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152509 #13 Feb 03 2022 19:41:23 %S A152509 0,2,139,8036,452068,25331360,1418668912,79446252224,4448995583296, %T A152509 249143789616128,13952052465406720,781314939695363072, %U A152509 43753636633642845184,2450203651553656365056,137211404487455350386688,7683838651300399095726080,430294964472840921667551232 %N A152509 1/30 of the number of permutations of 5 indistinguishable copies of 1..n with exactly 2 local maxima. %H A152509 Andrew Howroyd, <a href="/A152509/b152509.txt">Table of n, a(n) for n = 1..200</a> %H A152509 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (68,-708,2016). %F A152509 a(n) = (23*56^(n-1) - 23*6^(n-1) - 25*(n-1)*6^(n-1))/500. - _Andrew Howroyd_, May 10 2020 %F A152509 From _Colin Barker_, Jul 16 2020: (Start) %F A152509 G.f.: x^2*(2 + 3*x) / ((1 - 6*x)^2*(1 - 56*x)). %F A152509 a(n) = 68*a(n-1) - 708*a(n-2) + 2016*a(n-3) for n>3. %F A152509 (End) %t A152509 LinearRecurrence[{68,-708,2016},{0,2,139},20] (* _Harvey P. Dale_, Feb 03 2022 *) %o A152509 (PARI) a(n) = {(23*56^(n-1) - 23*6^(n-1) - 25*(n-1)*6^(n-1))/500} \\ _Andrew Howroyd_, May 10 2020 %o A152509 (PARI) concat(0, Vec(x^2*(2 + 3*x) / ((1 - 6*x)^2*(1 - 56*x)) + O(x^20))) \\ _Colin Barker_, Jul 16 2020 %Y A152509 Cf. A152494, A334773. %K A152509 nonn,easy %O A152509 1,2 %A A152509 _R. H. Hardin_, Dec 06 2008 %E A152509 Terms a(8) and beyond from _Andrew Howroyd_, May 10 2020