cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152525 a(n) is the number of unordered pairs of disjoint set partitions of an n-element set.

This page as a plain text file.
%I A152525 #43 Dec 17 2019 05:35:53
%S A152525 0,0,1,7,65,811,12762,244588,5574956,148332645,4538695461,
%T A152525 157768581675,6167103354744,268758895112072,12961171404183498,
%U A152525 687270616305277589,39843719438374998543,2512873126513271758171,171643113190082528007702,12647168303374365311984284
%N A152525 a(n) is the number of unordered pairs of disjoint set partitions of an n-element set.
%H A152525 Alois P. Heinz, <a href="/A152525/b152525.txt">Table of n, a(n) for n = 0..200</a>
%H A152525 Frank Ruskey and Jennifer Woodcock, <a href="http://webhome.cs.uvic.ca/~ruskey/Publications/RandDist/RandDist.html">The Rand and block distances of pairs of set partitions</a>, Combinatorial algorithms, 287-299, Lecture Notes in Comput. Sci., 7056, Springer, Heidelberg, 2011.
%H A152525 Frank Ruskey, Jennifer Woodcock and Yuji Yamauchi, <a href="https://doi.org/10.1016/j.jda.2012.04.003">Counting and computing the Rand and block distances of pairs of set partitions</a>, Journal of Discrete Algorithms, Volume 16, October 2012, Pages 236-248. - From _N. J. A. Sloane_, Oct 03 2012
%F A152525 a(n) = Sum_{k=0..n} binomial(n,k) * (Sum_{j=0..n-k} (-1)^j*A048993(n-k,j)) * binomial(A000110(k),2).
%F A152525 That is, summed on k from 0 to n, the number of k-element subsets of an n-element set, times the alternating sum of row n-k of Stirling2 numbers starting with +S(n-k, 0), times the number of pairs of partitions of k elements.
%F A152525 Obtained by inverting (binomial(A000110(n), 2)) = (Sum_{k=0..n} binomial(n,k)*A000110(n-k)*a(k)), which in turn is gotten by considering that a pair of conjoint partitions is gotten by choosing a partition of a subset and then choosing a pair of disjoint partitions of the complement.
%e A152525 From _Gus Wiseman_, Dec 09 2018: (Start)
%e A152525 The a(3) = 7 unordered pairs:
%e A152525   {{1},{2},{3}}| {{1,2,3}}
%e A152525    {{1},{2,3}} |{{1,2},{3}}
%e A152525    {{1},{2,3}} |{{1,3},{2}}
%e A152525    {{1,2},{3}} |{{1,3},{2}}
%e A152525    {{1},{2,3}} | {{1,2,3}}
%e A152525    {{1,2},{3}} | {{1,2,3}}
%e A152525    {{1,3},{2}} | {{1,2,3}}
%e A152525 (End)
%p A152525 a:= n-> add(binomial(n,k)*binomial(combinat[bell](k),2)*
%p A152525         add(Stirling2(n-k,j)*(-1)^j, j=0..n-k), k=0..n):
%p A152525 seq(a(n), n=0..20);  # _Alois P. Heinz_, May 27 2018
%t A152525 Array[Sum[Binomial[#, k] Sum[(-1)^j*StirlingS2[# - k, j], {j, 0, # - k}] Binomial[BellB@ k, 2], {k, 0, #}] &, 20, 0] (* _Michael De Vlieger_, May 27 2018 *)
%o A152525 (PARI) a000110(n) = polcoeff( sum( k=0, n, prod( i=1, k, x / (1 - i*x)), x^n * O(x)), n);
%o A152525 a(n) = sum(k=0, n, binomial(n,k) * sum(j=0, n-k, (-1)^j*stirling(n-k,j, 2) * binomial(a000110(k),2))); \\ _Michel Marcus_, May 27 2018
%Y A152525 Cf. A000110, A000258, A001247, A008277, A048993, A059849, A060639, A181939, A193297, A318393, A322441, A322442, A320768.
%K A152525 nonn
%O A152525 0,4
%A A152525 _David Pasino_, Dec 06 2008, Dec 08 2008