This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152534 #33 Feb 16 2025 08:33:09 %S A152534 1,1,2,1,3,3,3,1,5,7,11,11,8,4,1,7,13,25,36,44,42,36,24,13,5,1,11,24, %T A152534 54,93,142,184,215,222,208,172,126,81,44,19,6,1,15,39,98,195,344,532, %U A152534 753,964,1150,1264,1294,1226,1082,880,661,451,278,151,70,26,7,1 %N A152534 Triangle T(n,k) read by rows with q-e.g.f.: 1/Product_{k>0} (1-x^k/faq(k,q)). %H A152534 Alois P. Heinz, <a href="/A152534/b152534.txt">Rows n = 0..50, flattened</a> %H A152534 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/q-ExponentialFunction.html">q-Exponential Function</a>. %H A152534 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/q-Factorial.html">q-Factorial</a>. %F A152534 Sum_{k=0..binomial(n,2)} T(n,k)*q^k = Sum_{pi} faq(n,q)/Product_{i=1..n} faq(i,q)^e(i), where pi runs over all nonnegative integer solutions to e(1) + 2*e(2) + ... + n*e(n) = n and faq(i,q) = Product_{j=1..i} (q^j-1)/(q-1), i = 1..n. %F A152534 Sum_{k=0..binomial(n,2)} T(n,k)*exp(2*Pi*I*k/n) = 1. %F A152534 Sum_{k=0..binomial(n,2)} (-1)^k*T(n,k) = A152536(n). - _Alois P. Heinz_, Aug 09 2021 %e A152534 Triangle begins: %e A152534 1; %e A152534 1; %e A152534 2, 1; %e A152534 3, 3, 3, 1; %e A152534 5, 7, 11, 11, 8, 4, 1; %e A152534 7, 13, 25, 36, 44, 42, 36, 24, 13, 5, 1; %e A152534 ... %p A152534 multinomial2q := proc(n::integer,k::integer,nparts::integer) %p A152534 local lpar ,res, constrp; %p A152534 res := [] ; %p A152534 if n< 0 or nparts <= 0 then %p A152534 ; %p A152534 elif nparts = 1 then %p A152534 if n = k then %p A152534 return [[n]] ; %p A152534 end if; %p A152534 else %p A152534 for lpar from 0 do %p A152534 if lpar*nparts > n or lpar > k then %p A152534 break; %p A152534 end if; %p A152534 for constrp in procname(n-nparts*lpar,k-lpar,nparts-1) do %p A152534 if nops(constrp) > 0 then %p A152534 res := [op(res),[op(constrp),lpar]] ; %p A152534 end if; %p A152534 end do: %p A152534 end do: %p A152534 end if ; %p A152534 return res ; %p A152534 end proc: %p A152534 multinomial2 := proc(n::integer,k::integer) %p A152534 local res,constrp ; %p A152534 res := [] ; %p A152534 for constrp in multinomial2q(n,k,n) do %p A152534 if nops(constrp) > 0 then %p A152534 res := [op(res),constrp] ; %p A152534 end if ; %p A152534 end do: %p A152534 res ; %p A152534 end proc: %p A152534 faq := proc(i,q) %p A152534 mul((q^j-1)/(q-1),j=1..i) ; %p A152534 end proc; %p A152534 A152534 := proc(n,k) %p A152534 pi := [] ; %p A152534 for sp from 0 to n do %p A152534 pi := [op(pi),op(multinomial2(n,sp))] ; %p A152534 end do; %p A152534 tqk := 0 ; %p A152534 for p in pi do %p A152534 faqe :=1 ; %p A152534 for i from 1 to nops(p) do %p A152534 faqe := faqe* faq(i,q)^op(i,p) ; %p A152534 end do: %p A152534 tqk := tqk+faq(n,q)/faqe ; %p A152534 end do; %p A152534 tqk ; %p A152534 coeftayl(tqk,q=0,k) ; %p A152534 end proc: %p A152534 for n from 1 to 8 do %p A152534 for k from 0 to binomial(n,2) do %p A152534 printf("%d,",A152534(n,k)) ; %p A152534 end do; %p A152534 printf("\n") ; %p A152534 end do: # _R. J. Mathar_, Sep 27 2011 %p A152534 # second Maple program: %p A152534 f:= proc(n) option remember; `if`(n<2, 1, f(n-1)*(q^n-1)/(q-1)) end: %p A152534 b:= proc(n, i) option remember; simplify(`if`(n=0 or i=1, 1, %p A152534 add(b(n-i*j, i-1)/f(i)^j, j=0..n/i))) %p A152534 end: %p A152534 T:= n-> (p-> seq(coeff(p, q, i), i=0..degree(p)))(simplify(f(n)*b(n$2))): %p A152534 seq(T(n), n=0..10); # _Alois P. Heinz_, Aug 09 2021 %t A152534 f[n_] := f[n] = If[n < 2, 1, f[n - 1]*(q^n - 1)/(q - 1)]; %t A152534 b[n_, i_] := b[n, i] = Simplify[If[n == 0 || i == 1, 1, %t A152534 Sum[b[n - i*j, i - 1]/f[i]^j, {j, 0, n/i}]]]; %t A152534 T[n_] := CoefficientList[Simplify[f[n]*b[n, n]], q]; %t A152534 Table[T[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Mar 11 2022, after _Alois P. Heinz_ *) %Y A152534 Cf. A005651 (row sums), A000041 (first column), A076276 (second column), A152474, A152536. %Y A152534 T(n,n) gives A346980. %K A152534 nonn,tabf %O A152534 0,3 %A A152534 _Vladeta Jovovic_, Dec 06 2008 %E A152534 T(0,0)=1 prepended by _Alois P. Heinz_, Aug 09 2021