This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152547 #10 Aug 28 2012 23:30:18 %S A152547 1,2,3,1,4,2,2,5,3,3,3,1,1,6,4,4,4,4,2,2,2,2,2,7,5,5,5,5,5,3,3,3,3,3, %T A152547 3,3,3,3,1,1,1,1,1,8,6,6,6,6,6,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2,2,2,2, %U A152547 2,2,2,2,2,2,2,2,2,2,9,7,7,7,7,7,7,7,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 %N A152547 Triangle, read by rows, derived from Pascal's triangle (see g.f. and example for generating methods). %H A152547 Paul D. Hanna, <a href="/A152547/b152547.txt">Table of rows 0..14 listed as n, a(n) for n = 0..7059</a> %F A152547 G.f. of row n: Sum_{k=0..n} (x^binomial(n,k) - 1)/(x-1) = Sum_{k=0..binomial(n,n\2)-1} T(n,k)*x^k. %F A152547 A152548(n) = Sum_{k=0..C(n,[n/2])-1} T(n,k)^2 = Sum_{k=0..[(n+1)/2]} C(n+1, k)*(n+1-2k)^3/(n+1). %e A152547 The number of terms in row n is C(n,[n/2]). %e A152547 Triangle begins: %e A152547 [1], %e A152547 [2], %e A152547 [3,1], %e A152547 [4,2,2], %e A152547 [5,3,3,3,1,1], %e A152547 [6,4,4,4,4,2,2,2,2,2], %e A152547 [7,5,5,5,5,5,3,3,3,3,3,3,3,3,3,1,1,1,1,1], %e A152547 [8,6,6,6,6,6,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2], %e A152547 [9,7,7,7,7,7,7,7,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1], %e A152547 ... %e A152547 ILLUSTRATION OF GENERATING METHOD. %e A152547 Row n is derived from the binomial coefficients in the following way. %e A152547 Place markers in an array so that the number of contiguous markers %e A152547 in row k is C(n,k) and then count the markers along columns. %e A152547 For example, row 6 of this triangle is generated from C(6,k) like so: %e A152547 ------------------------------------------ %e A152547 1: o - - - - - - - - - - - - - - - - - - - %e A152547 6: o o o o o o - - - - - - - - - - - - - - %e A152547 15:o o o o o o o o o o o o o o o - - - - - %e A152547 20:o o o o o o o o o o o o o o o o o o o o %e A152547 15:o o o o o o o o o o o o o o o - - - - - %e A152547 6: o o o o o o - - - - - - - - - - - - - - %e A152547 1: o - - - - - - - - - - - - - - - - - - - %e A152547 ------------------------------------------ %e A152547 Counting the markers along the columns gives row 6 of this triangle: %e A152547 [7,5,5,5,5,5,3,3,3,3,3,3,3,3,3,1,1,1,1,1]. %e A152547 Continuing in this way generates all the rows of this triangle. %e A152547 ... %e A152547 Number of repeated terms in each row of this triangle forms A008315: %e A152547 1; %e A152547 1; %e A152547 1, 1; %e A152547 1, 2; %e A152547 1, 3, 2; %e A152547 1, 4, 5; %e A152547 1, 5, 9, 5; %e A152547 1, 6, 14, 14; %e A152547 1, 7, 20, 28, 14;... %o A152547 (PARI) {T(n,k)=polcoeff(sum(j=0,n,(x^binomial(n,j) - 1)/(x-1)),k)} %o A152547 for(n=0,10, for(k=0, binomial(n,n\2)-1, print1(T(n,k),","));print("")) %Y A152547 Cf. A152548 (row squared sums), A008315; A152545. %K A152547 nonn,tabf %O A152547 0,2 %A A152547 _Paul D. Hanna_, Dec 14 2008