cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152547 Triangle, read by rows, derived from Pascal's triangle (see g.f. and example for generating methods).

This page as a plain text file.
%I A152547 #10 Aug 28 2012 23:30:18
%S A152547 1,2,3,1,4,2,2,5,3,3,3,1,1,6,4,4,4,4,2,2,2,2,2,7,5,5,5,5,5,3,3,3,3,3,
%T A152547 3,3,3,3,1,1,1,1,1,8,6,6,6,6,6,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2,2,2,2,
%U A152547 2,2,2,2,2,2,2,2,2,2,9,7,7,7,7,7,7,7,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
%N A152547 Triangle, read by rows, derived from Pascal's triangle (see g.f. and example for generating methods).
%H A152547 Paul D. Hanna, <a href="/A152547/b152547.txt">Table of rows 0..14 listed as n, a(n) for n = 0..7059</a>
%F A152547 G.f. of row n: Sum_{k=0..n} (x^binomial(n,k) - 1)/(x-1) = Sum_{k=0..binomial(n,n\2)-1} T(n,k)*x^k.
%F A152547 A152548(n) = Sum_{k=0..C(n,[n/2])-1} T(n,k)^2 = Sum_{k=0..[(n+1)/2]} C(n+1, k)*(n+1-2k)^3/(n+1).
%e A152547 The number of terms in row n is C(n,[n/2]).
%e A152547 Triangle begins:
%e A152547 [1],
%e A152547 [2],
%e A152547 [3,1],
%e A152547 [4,2,2],
%e A152547 [5,3,3,3,1,1],
%e A152547 [6,4,4,4,4,2,2,2,2,2],
%e A152547 [7,5,5,5,5,5,3,3,3,3,3,3,3,3,3,1,1,1,1,1],
%e A152547 [8,6,6,6,6,6,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2],
%e A152547 [9,7,7,7,7,7,7,7,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
%e A152547 ...
%e A152547 ILLUSTRATION OF GENERATING METHOD.
%e A152547 Row n is derived from the binomial coefficients in the following way.
%e A152547 Place markers in an array so that the number of contiguous markers
%e A152547 in row k is C(n,k) and then count the markers along columns.
%e A152547 For example, row 6 of this triangle is generated from C(6,k) like so:
%e A152547 ------------------------------------------
%e A152547 1: o - - - - - - - - - - - - - - - - - - -
%e A152547 6: o o o o o o - - - - - - - - - - - - - -
%e A152547 15:o o o o o o o o o o o o o o o - - - - -
%e A152547 20:o o o o o o o o o o o o o o o o o o o o
%e A152547 15:o o o o o o o o o o o o o o o - - - - -
%e A152547 6: o o o o o o - - - - - - - - - - - - - -
%e A152547 1: o - - - - - - - - - - - - - - - - - - -
%e A152547 ------------------------------------------
%e A152547 Counting the markers along the columns gives row 6 of this triangle:
%e A152547 [7,5,5,5,5,5,3,3,3,3,3,3,3,3,3,1,1,1,1,1].
%e A152547 Continuing in this way generates all the rows of this triangle.
%e A152547 ...
%e A152547 Number of repeated terms in each row of this triangle forms A008315:
%e A152547 1;
%e A152547 1;
%e A152547 1, 1;
%e A152547 1, 2;
%e A152547 1, 3, 2;
%e A152547 1, 4, 5;
%e A152547 1, 5, 9, 5;
%e A152547 1, 6, 14, 14;
%e A152547 1, 7, 20, 28, 14;...
%o A152547 (PARI) {T(n,k)=polcoeff(sum(j=0,n,(x^binomial(n,j) - 1)/(x-1)),k)}
%o A152547 for(n=0,10, for(k=0, binomial(n,n\2)-1, print1(T(n,k),","));print(""))
%Y A152547 Cf. A152548 (row squared sums), A008315; A152545.
%K A152547 nonn,tabf
%O A152547 0,2
%A A152547 _Paul D. Hanna_, Dec 14 2008