This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152575 #3 Mar 30 2012 17:34:28 %S A152575 -3,3,-3,-12,15,-3,12,-27,18,-3,-60,147,-117,33,-3,540,-1383,1200, %T A152575 -414,60,-3,-1080,3306,-3783,2028,-534,66,-3,6480,-20916,26004,-15951, %U A152575 5232,-930,84,-3,-32400,111060,-150936,105759,-42111,9882,-1350,99,-3,97200 %N A152575 A triangle of coefficients of polynomials with roots as the Pi-digits base ten A000796(n)=d(n):d(1)=3; p(x,n)=-d(1)*Product[x-d(m),{m,2,n}]. %C A152575 p(x,n)=Product[(x-i)^a(i),{i,0,9}]: a(i) is the count number of the %C A152575 way the digits occur by the n-th digit. %C A152575 The limiting polynomial is: %C A152575 pL(x)=Product[(x-i),{i,0,9}]= %C A152575 -362880 x + 1026576 x^2 - 1172700 x^3 + 723680 x^4 - 269325 x^5 + 63273 x^6 - 9450 x^7 + 870 x^8 - 45 x^9 + x^10; %C A152575 since if the digits occur equally: %C A152575 p(x,Infinity)=-3*Product[(x-i),{i,0,9}]^(Infinity/10). %C A152575 Or at the n-th digits equality: %C A152575 p(x,n)=-3*Product[(x-i),{i,0,9}]^(n/10). %C A152575 The n+1 digit: %C A152575 p(x,n+1)=p(x,n)*(x-d(n+1)). %F A152575 Pi-digits base ten A000796(n)=d(n): %F A152575 p(x,n)=-d(1)*Product[x-d(m),{m,2,n}]. %e A152575 {-3}, %e A152575 {3, -3}, %e A152575 {-12,15, -3}, %e A152575 {12, -27, 18, -3}, %e A152575 {-60, 147, -117, 33, -3}, %e A152575 {540, -1383, 1200, -414, 60, -3}, %e A152575 {-1080, 3306, -3783, 2028, -534, 66, -3}, %e A152575 {6480, -20916, 26004, -15951, 5232, -930, 84, -3}, %e A152575 {-32400, 111060, -150936, 105759, -42111, 9882, -1350, 99, -3}, %e A152575 {97200, -365580, 563868, -468213, 232092, -71757, 13932, -1647, 108, -3} %t A152575 Clear[a, p, n, m]; %t A152575 a = Delete[Flatten[RealDigits[Pi, 10, 100]], 100]; %t A152575 p[x_, n_] := If[n == 1, -a[[1]], -a[[1]]*Product[x - a[[m]], {m, 2, n}]]; %t A152575 Table[CoefficientList[p[x, n], x], {n, 1, 10}] %t A152575 Flatten[%] %Y A152575 A000796 %K A152575 sign,tabl,uned %O A152575 1,1 %A A152575 _Roger L. Bagula_, Dec 08 2008