A152603 a(1) = 1; thereafter, a(n) is always the smallest integer > a(n-1) not leading to a contradiction, such that any three consecutive digits in the sequence sum up to a prime.
1, 2, 4, 5, 8, 41, 60, 70, 410, 412, 416, 418, 452, 454, 458, 470, 472, 476, 478, 812, 814, 818, 830, 832, 836, 838, 872, 874, 878, 2101, 2210, 2300, 2302, 3002, 3003, 4011, 5110, 6101, 6410, 6500, 7002, 9020, 9200, 20020, 30020, 30021, 40110
Offset: 1
Links
- Eric Angelini, Chiffres consecutifs dans quelques suites
- E. Angelini, Chiffres consecutifs dans quelques suites [Cached copy, with permission]
Programs
-
PARI
A152603(n,show_all=0)={ my(a); for(i=1,n, if(i<4,a=2^i/2, my( l2d=a%100+if(i<7,10*[1,2,4,5][i-2])); while(a++,my(t=a+l2d*10^#Str(a)); forstep(d=#Str(a)-1,0,-1, isprime(z=t\10^d%10+t\10^(d+1)%10+t\10^(d+2)%10) & next; a+=10^d-a%10^d-1; next(2)); break)); show_all&print1(a", ")); a} \\ M. F. Hasler, Oct 16 2009
Formula
a(n) = b(n)*10^[3n/52] = c(n)*10^(3n/52) with (except for smaller initial terms) 20 < b(n) < 611 and c(52k+23) = 9.89... < c(n) < c(52k) = 91.1... for all integers k > 0. - M. F. Hasler, Oct 16 2009
Comments