cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152612 Number of isomorphism classes of n-fold coverings of a connected graph with Betti number 3.

Original entry on oeis.org

1, 8, 49, 681, 14721, 524137, 25471105, 1628116890, 131789656610, 13174980291658, 1593894406662866, 229496526010111571, 38782290669508033003, 7600987633299112125995, 1710169549495739472301076, 437793904386312274903991653, 126520458075485848061740557461
Offset: 1

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Comments

Number of orbits of the conjugacy action of Sym(n) on Sym(n)^3 [Kwak and Lee, 2001]. - Álvar Ibeas, Mar 24 2015

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.

Crossrefs

Euler transform of A057006.
Fourth column of A160449.

Programs

  • Mathematica
    A057006 = Import["https://oeis.org/A057006/b057006.txt", "Table"][[All, 2]];
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[DivisorSum[j, # p[#]&] b[n - j], {j, 1, n}]/n]; b];
    a = etr[A057006[[#]]&];
    Array[a, 15] (* Jean-François Alcover, Aug 29 2019 *)
  • Sage
    [sum(p.aut()**2 for p in Partitions(n)) for n in range(1,8)] # Álvar Ibeas, Mar 24 2015

Extensions

a(6) and a(7) from Geloun and Ramgoolan (2013) added by N. J. A. Sloane, Nov 21 2013
Name clarified and more terms added by Álvar Ibeas, Mar 24 2015