A152667 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k runs of even entries (n >= 2, 1 <= k <= floor(n/2)). For example, the permutation 321756498 has 3 runs of even entries: 2, 64 and 8.
2, 6, 12, 12, 48, 72, 144, 432, 144, 720, 2880, 1440, 2880, 17280, 17280, 2880, 17280, 129600, 172800, 43200, 86400, 864000, 1728000, 864000, 86400, 604800, 7257600, 18144000, 12096000, 1814400, 3628800, 54432000, 181440000, 181440000, 54432000, 3628800
Offset: 2
Examples
T(4,2) = 12 because we have 1234, 3214, 1432, 3412, 2134, 2314 and their reverses. Triangle starts: 2; 6; 12, 12; 48, 72; 144, 432, 144; 720, 2880, 1440;
Programs
-
Maple
ae := proc (n, k) options operator, arrow: factorial(n)^2*binomial(n+1, k)*binomial(n-1, k-1) end proc: ao := proc (n, k) options operator, arrow: factorial(n)*factorial(n+1)*binomial(n-1, k-1)*binomial(n+2, k) end proc: T := proc (n, k) if `mod`(n, 2) = 0 then ae((1/2)*n, k) else ao((1/2)*n-1/2, k) end if end proc; for n to 12 do seq(T(n, k), k = 1 .. floor((1/2)*n)) end do; # yields sequence in triangular form
-
Mathematica
T[n_, k_] := If[EvenQ[n], ((n/2)!)^2*Binomial[n/2+1, k]*Binomial[n/2-1, k-1], ((n-1)/2)!*((n-1)/2+1)!*Binomial[(n-1)/2-1, k-1]*Binomial[(n-1)/2+2, k]]; Table[T[n, k], {n, 2, 12}, {k, 1, Floor[n/2]}] // Flatten (* Jean-François Alcover, Sep 24 2024 *)
Formula
T(2n,k) = (n!)^2 * binomial(n+1,k) binomial(n-1,k-1);
T(2n+1,k) = n!*(n+1)!*binomial(n-1,k-1)*binomial(n+2,k) (n >= 1).
Comments